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a b s t r a c t 

In this paper, we propose a new non-convex regularization term named half-quadratic function to achieve 

robustness and sparseness for robust principal component analysis, and derive its proximity operator, in- 

dicating that the resultant optimization problem can be solved in computationally attractive manner. In 

addition, the low-rank matrix component is expressed as the factorization form and proximal block co- 

ordinate descent is leveraged to seek its solution, whose convergence is rigorously analyzed. We prove 

that any limit point of the iterations is a critical point of the objective function. Furthermore, the param- 

eter that controls the robustness and sparseness in our algorithm, is automatically adjusted according to 

the statistical residual error. Experimental results based on synthetic and real-world data demonstrate 

that the devised algorithm can effectively extract the low-rank and sparse components. MATLAB code is 

available at https://github.com/bestzywang . 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Principal component analysis (PCA) [1] , as a workhorse in- 

ended for dimensionality reduction, aims to find the optimal low- 

imensional linear subspace of high-dimensional data in the Eu- 

lidean space. It has a variety of applications such as computer vi- 

ion [2] , bioinformatics [3,4] , as well as signal and image process- 

ng [5] , since most information/energy of many real-world data lies 

n a low-dimensional subspace. However, its performance will be 

egraded in the presence of gross errors, and outliers are ubiqui- 

ous in many situations due to sudden intense interference in the 

ransmission, sensor failure and calibration error [6,7] . 

To tackle this problem, robust PCA (RPCA) [8–10] has been 

roposed to decompose the observed matrix data contaminated 

y outliers into a sum of low-rank and sparse matrices. Intu- 

tively, the RPCA can be formulated as rank and � 0 -norm minimiza- 

ion problem, but it is NP-hard as the rank function is discrete. 

n [9,10] , the authors replace the rank function and � 0 -norm with 

he nuclear norm and � 1 -norm, respectively, to obtain a convex 

ptimization problem since many ready-made convex optimiza- 

ion methods such as the inexact augmented Lagrange multiplier 

IALM) [11] and alternating direction method (ALM) [12] , can be di- 

ectly applied. Although one can acquire low-rank and sparse ma- 
∗ Corresponding author. 
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rices exactly under mild conditions via this convex model, it does 

ot take the dense noise with small magnitudes into account. This 

oint is difficult to guarantee because the data in practical scenar- 

os may also be corrupted by Gaussian noise or other noise that 

ffects every matrix entries. Hence, Zhou et al. [13] decompose 

he data matrix into a sum of low-rank, sparse and dense noise 

atrices, leading to accurate recovery in the presence of point- 

ise noise. In addition, efficient algorithms, including alternating 

plitting augmented Lagrangian method (ASALM) [15] , and partially 

mooth proximal gradient (PSPG) [16] , are developed. Recently, Gu 

t al. [14] replace the nuclear norm with weighted nuclear norm, 

hich adaptively assigns a distinct weight for each singular value, 

o attain low-rank matrix recovery, and experiments have verified 

ts effectiveness. However, the bottleneck of the above approaches 

s that they require a full singular value decomposition (SVD) cal- 

ulation at each iteration, and thus their computational complex- 

ty significantly increases with the data dimensions, implying that 

arge matrices cannot be tackled efficiently. 

As a remedy, RPCA methods based on factorization, which de- 

ompose the low-rank matrix as the product of two rank- r matri- 

es, say, U 

U U and V V V , including go decomposition (GoDec) [17] , low- 

ank matrix fitting (LMaFit) [18] and greedy bilateral smoothing 

GreBsmo) [19] , have been suggested. Besides, Bayesian schemes 

uch as Bayesian RPCA (BRPCA) [20] , variational Bayesian RPCA 

VBRPCA) [21] and sparse Bayesian learning for RPCA (SBLR- 

CA) [22] , are proposed. However, they leverage the � 1 -norm 

s regularization penalty to achieve sparseness, and it has been 

ointed out that the � 1 -norm over-penalizes the data with large 
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agnitudes, resulting in a biased solution [23] . In contrast, non- 

onvex regularization penalties, such as smoothly clipped abso- 

ute deviation (SCAD) [23] , � p -norm ( 0 < p < 1 ) and Laplace func-

ion [24] , can ameliorate this problem. This results in many algo- 

ithms, including robust recovery of corrupted low-rank matrix by 

mplicit regularizer (IR) [25] , robust low-rank matrix decomposi- 

ion based on maximum correntropy (GoDec+) [26] , non-convex 

 p -norm based robust PCA (LPRPCA) [27] and non-convex regular- 

zed robust PCA (NCRPCA) [28] . However, the SCAD requires two 

ser-defined parameters, while the � p -norm (except for p = 

1 
2 and 

p = 

2 
3 ) and Laplace function have no closed-solutions for their cor- 

esponding proximity operators. 

In this paper, we propose a non-convex regularization penalty 

erm called half-quadratic function (HQF) to achieve robustness 

nd develop an efficient algorithm, called robust PCA via HQF reg- 

larization (RPCA-HQF). Although the regularization term is non- 

onvex, we obtain its proximity operator, which facilitates solv- 

ng the resultant optimization problem in a computationally effi- 

ient manner. Besides, the parameter that controls robustness is 

elf-adaptive in accordance to current residual error, and experi- 

ents demonstrate that our method exhibits better restoration re- 

ults and is more robust than the competing approaches. 

Compared with non-convex regularization [25,26] , which only 

btains the low-rank components, our method can seek both the 

ow-rank and sparse matrices, and does not require other tunable 

arameters except for the termination conditions. Accordingly, our 

ain contributions are highlighted as follows: 

1. A new non-convex regularization is utilized to attain robustness 

and sparseness, and its proximity operator is derived, which 

makes the corresponding optimization problem solvable in an 

efficient manner. 

2. We theoretically analyze that any accumulation point of 

{ U 

U U 

k , V V V k } generated by the proposed algorithm is a critical point. 

3. There are no tunable parameters other than the termination 

conditions in the proposed algorithm and experiments demon- 

strate that our method exhibits better restoration results, com- 

pared with the competing approaches. 

The remainder of this paper is organized as follows. In 

ection 2 , we introduce notations and related works about RPCA. 

he RPCA-HQF algorithm is developed in Section 3 . Then experi- 

ental results based on synthetic data, real-world videos and face 

mages are presented in Section 4 . Finally, conclusions are drawn 

n Section 5 . 

. Preliminaries 

In this section, notations are provided and related works are 

eviewed. 

.1. Notations 

Throughout this paper, the (i, j) entry of a matrix A 

A A is repre- 

ented by A i j and 0 0 0 means a matrix with all entries being ze- 

os. In addition, the Frobenius norm of A 

A A ∈ R 

m ×n is denoted by 

 A 

A A ‖ F = 

√ ∑ m 

i =1 

∑ n 
j=1 A 

2 
i j 

, and unless stated otherwise, the matrix 

orm refers to the Frobenius norm. Moreover, ‖ S S S ‖ 0 signifies the 

umber of non-zero entries of S S S . Finally, (·) T and | · | are the trans-

ose and absolute operators, respectively. 

.2. Related works 

Mathematically, RPCA via decomposition into low-rank and 

parse matrices can be directly formulated as [8–10] : 

min 

L L L , S S S 
rank ( L L L ) + λ‖ S S S ‖ 0 , s.t. X 

X X = L L L + S S S (1) 
2 
here X X X ∈ R 

m ×n is the observed low-rank matrix corrupted by out- 

iers, L L L ∈ R 

m ×n is the low-rank matrix, S S S ∈ R 

m ×n is the sparse ma- 

rix, and ‖ S S S ‖ 0 denotes the cardinality of S S S (for cardinality, please 

efer to [29,30] ). However, (1) is an intractable problem as the rank 

unction is discrete. To make it computationally feasible, the nu- 

lear norm and � 1 -norm are employed to replace the rank func- 

ion and � 0 -norm, respectively, resulting in the convex relaxation 

f (1) [9,10] : 

min 

L L L , S S S 
‖ L L L ‖ ∗ + λ‖ S S S ‖ 1 , s.t. X 

X X = L L L + S S S (2) 

here ‖ L L L ‖ ∗ is the nuclear norm, which is the sum of singular val-

es of L L L . Although (2) can recover L L L and S S S exactly with high prob- 

bility under mild conditions, it requires that the low-rank and 

parse components are strictly low-rank and exactly sparse, re- 

pectively. Nevertheless, many real-world data are approximately 

ow-rank and may be contaminated by Gaussian noise as well as 

utliers, leading to the relaxed model of (2) , known as stable prin- 

ipal component pursuit (SPCP) [13] : 

min 

L L L , S S S 
‖ L L L ‖ ∗ + λ‖ S S S ‖ 1 , s.t. ‖ 

X 

X X − L L L − S S S ‖ F ≤ δ (3) 

here δ > 0 is a constant related to the dense noise matrix. Be- 

ides, (3) needs to perform SVD at each iteration, and to avoid this 

ecomposition, RPCA based on factorization is suggested [19] , cor- 

esponding to: 

min 

U U U , V V V , S S S 
‖ 

X 

X X −U 

U U V 

V V − S S S ‖ 

2 
F + λ‖ S S S ‖ 1 (4) 

here U 

U U ∈ R 

m ×r and V V V ∈ R 

r×n . Since the � 1 -norm regularization 

rings about the bias problem, non-convex regularization is intro- 

uced [26] , resulting in: 

min 

U U U , V V V , S S S 
‖ 

X 

X X −U 

U U V 

V V − S S S ‖ 

2 
F + λ‖ S S S ‖ ϕ (5) 

here ‖ S S S ‖ ϕ = 

∑ m 

i =1 

∑ n 
j=1 ϕ( S S S i j ) , and ϕ(·) is an implicit non-convex 

unction. 

. Proposed algorithm 

First, we put forth a new non-convex function, whose expres- 

ion is: 

 e (t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

− (| t| − e ) 2 

2 

+ 

e 2 

2 

, | t| < e 

e 2 

2 

, | t| ≥ e 

(6) 

ince when 0 ≤ t ≤ e , g e (t) is quadratic and when t ≥ e , g e (t) is a

onstant, we name g e (t) as HQF. 

Motivated by (4) and (5) , our problem formulation is: 

min 

U U U , V V V , S S S 

1 

2 

‖ 

X 

X X −U 

U U V 

V V − S S S ‖ 

2 
F + ‖ S S S ‖ g e (7) 

here ‖ S S S ‖ g e is separable, namely, ‖ S S S ‖ g e = 

∑ m 

i =1 

∑ n 
j=1 g e ( S S S i j ) . Dif- 

erent from (4) that employs λ to control sparseness and attain 

obustness, (7) adopts e to achieve sparseness and robustness, and 

e will design a strategy to choose the value of e . We first show

ow to solve S S S . Given U 

U U 

k and V V V k , (7) is equal to: 

 

 

 

k +1 = arg min 

S S S 

1 

2 

∥∥R 

R R 

k − S S S 
∥∥2 

F 
+ ‖ S S S ‖ g e (8) 

here R R R k = X X X −U 

U U 

k V V V k . We define a proximity operator prior to solv- 

ng (8) , defined as: 

 (r) := arg min 

t 

{ 

1 

2 

(r − t) 2 + g e (t) 
} 

(9) 

or the HQF, its proximity operator is derived in the following the- 

rem. 
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Algorithm 1 RPCA-HQF. 

Input: X X X , I m 

, I n , e 
0 , ζ and η

Initialize: Randomize V V V 0 ∈ R 

r×n . 

for n = 1 , 2 , · · · , I n do 

Find U 

U U 

n according to (19) // Fix V V V n −1 , optimize U 

U U 

Find V V V n according to (20) // Fix U 

U U 

n , optimize V V V 

end for 

Set U 

U U 

0 = U 

U U 

n and V V V 0 = V V V n 

for k = 1 , 2 , · · · , I m 

do 

Calculate e k according to (13) // Fix U 

U U 

k −1 and V V V k −1 , 

update e k 

Find S S S k according to (11) // Fix U 

U U 

k −1 , V V V k −1 and e k , 

optimize S S S 

Find U 

U U 

k according to (16) // Fix V V V k −1 and S S S k , optimize 

U 

U U 

Find V V V k according to (17) // Fix U 

U U 

k and S S S k , optimize V V V 

Stop, if a termination condition is satisfied. 

end for 

Output: L L L = U 

U U 

k V V V k and S S S k . 

A

i

r  
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m

d  
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heorem 1. For a constant r ∈ R , the proximity operator of HQF is: 

 (r) = 

{
0 , | r| < e 
r, | r| ≥ e 

(10) 

Proof : Substituting (6) into (9) , we have: 

 (r) : = arg min 

t 

(r − t) 2 

2 

+ g e (t) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

arg min 

t 

2(e − r) t + r 2 

2 

, 0 ≤ t < e 

arg min 

t 

−2(e + r) t + r 2 

2 

, −e < t < 0 

arg min 

t 

(r − t) 2 

2 

+ 

e 2 

2 

, | t| ≥ e 

= 

{
0 , | r| < e 
r, | r| ≥ e 

he proof is complete. �
Therefore, the solution to (8) is: 

 

 

 

k +1 = P ( R 

R R 

k +1 ) (11) 

It is worth mentioning that e controls the robustness of (7) be- 

ause any entry R R R i j ≥ e will be regarded as an outlier. In fact, the 

hoice of e depends on the inner noise level. Since the conven- 

ional standard deviation is no longer a reliable spread measure 

n the presence of outliers, the robust normalized median absolute 

eviation (MADN) [35] is exploited, that is, 

k = 1 . 4815 × Med (| vec 
(
R 

R R 

k 
)

− Med 

(
vec 

(
R 

R R 

k 
))| ) (12) 

ith Med (·) being the sample median operator. Thus, we have: 

 

k = min 

{
ζσ k , e k −1 

}
(13) 

here ζ > 0 is a constant, and we set ζ = 3 according to rule of

humb [36] . 

Next, given S S S k +1 , the proximal block coordinate descent 

BCD) [31,32] is leveraged to find the solutions to U 

U U and V V V via al- 

ernately updating U 

U U and V V V as: 

 

 

 

k +1 = arg min 

U U U 

1 
2 

∥∥X 

X X −U 

U U V 

V V 

k − S S S k +1 
∥∥2 

F 
+ 

λ
2 

∥∥U 

U U −U 

U U 

k 
∥∥2 

F 
(14) 

 

 

 

k +1 = arg min 

V V V 

1 
2 

∥∥X 

X X −U 

U U 

k +1 V 

V V − S S S k +1 
∥∥2 

F 
+ 

λ
2 

∥∥V 

V V −V 

V V 

k 
∥∥2 

F 
(15) 

here λ > 0 is the proximal parameter [28] . 

Given X X X , V V V k and S S S k +1 , (14) is convex, whose closed-form solu- 

ion is: 

 

 

 

k +1 = 

(
D 

D D 

k +1 
(
V 

V V 

k 
)T − λU 

U U 

k 

)(
V 

V V 

k 
(
V 

V V 

k 
)T − λI I I 

)−1 

(16) 

here D 

D D 

k +1 = X X X − S S S k +1 and its computational complexity is 

 (mnr 2 ) . 

Similarly, given X X X , U 

U U 

k +1 and S S S k +1 , the optimal solution to (15) is: 

 

 

 

k +1 = 

((
U 

U U 

k +1 
)T 

U 

U U 

k +1 − λI I I 

)−1 ((
U 

U U 

k +1 
)T 

D 

D D 

k +1 − λV 

V V 

k 

)
(17) 

hose computational complexity is also O (mnr 2 ) . 

Besides, since (7) is non-convex, PowerFactorization [33] is 

dopted to initialize U 

U U and V V V in (7) , that is: 

min 

U U U , V V V 

1 
2 ‖ 

X 

X X −U 

U U V 

V V ‖ 

2 
F (18) 

hich is a special case of (7) when S S S = 0 0 0 , and its solutions are: 

 

 

 

n +1 = X 

X X 

(
( V 

V V 

n ) 
† 
)T 

(19) 

 

 

 

n +1 = X 

X X 

((
U 

U U 

n +1 
)† 

)T 

(20) 
3 
The detailed optimization procedure is summarized in 

lgorithm 1 . Since (19) and (20) are used to provide initial- 

zation for (7) and alternating minimization has a fast convergence 

ate [34] , we set I n = 3 in this study. Besides, Algorithm 1 will

e terminated when η = 

(‖ R R R k ‖ F − ‖ R R R k +1 ‖ F 
)
/ 
√ 

m × n is less than a 

reset threshold value η and/or the iteration number reaches the 

aximum allowable number of outer iterations I m 

. Moreover, we 

efine L ( U 

U U , V V V , S S S , e ) = 

1 
2 ‖ X X X −U 

U U V V V − S S S ‖ 2 F + ‖ S S S ‖ g e , and the theoretical

nalysis of Algorithm 1 is provided in Theorem 2 . We first provide 

he definition of a critical point. 

efinition 1. Given a smooth function f (x ) , x ∗ is a critical point of

f (x ) if 0 = ∂ f (x ∗) [37,38] . 

heorem 2. The loss function L ( U 

U U , V V V , S S S , e ) is non-increasing and

ower bounded by 0, thus the sequence L ( U 

U U 

k , V V V k , S S S k , e k ) generated by

lgorithm 1 is convergent. In addition, any limit point of { U 

U U 

k , V V V k } is 
 critical point of problem (7) . 

Proof : First, we prove that when updating e k → e k +1 via (13) ,

 ( U 

U U 

k , V V V k , S S S k , e k +1 ) ≤ L ( U 

U U 

k , V V V k , S S S k , e k ) . ‖ S S S ‖ g e is the only component

elated to e in L ( U 

U U , V V V , S S S , e ) and ‖ S S S ‖ g e = 

∑ 

i, j g e ( S S S i, j ) . By taking the

artial derivative of g e ( S S S i, j ) with respect to (w.r.t.) e , we have

 e ( S S S i, j ) > 0 , because 

∂g e (S i, j ) 

∂e 
= 

{| S i, j | , | S i, j | < e 
e, | S i, j | ≥ e 

(21) 

nd it is easy to obtain: 

∂L ( U 

U U , V 

V V , S S S , e ) 

∂e 
= 

∂ 
∑ 

i, j g e ( S S S i, j ) 

∂e 
= 

∑ 

i, j 

∂g e ( S S S i, j ) 

∂e 
> 0 (22) 

hich means that L ( U 

U U , V V V , S S S , e ) is monotonically increasing w.r.t. e .

ince the updated rule in (13) is non-increasing, we attain 

 ( U 

U U 

k , V 

V V 

k , S S S k , e k +1 ) ≤ L ( U 

U U 

k , V 

V V 

k , S S S k , e k ) (23)

Second, when updating S S S k , we have 

 ( U 

U U 

k , V 

V V 

k , S S S k +1 , e k +1 ) ≤ L ( U 

U U 

k , V 

V V 

k , S S S k , e k +1 ) (24)

hich is due to the proximity operator (10) . 

In addition, since U 

U U 

k +1 is the optimal solution to (14) , we have: 

1 

2 

∥∥X X X −U 

U U 

k +1 V V V k − S S S k +1 
∥∥2 

F 
+ 

λ

2 

∥∥U 

U U 

k +1 −U 

U U 

k 
∥∥2 

F 
≤ 1 

2 

∥∥X X X −U 

U U 

k V V V k − S S S k +1 
∥∥2 

F 

(25) 
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1 

2 

∥∥X 

X X −U 

U U 

k +1 V 

V V 

k − S S S k +1 
∥∥2 

F 
+ ‖ S S S k +1 ‖ g e 

≤ 1 

2 

∥∥X 

X X −U 

U U 

k V 

V V 

k − S S S k +1 
∥∥2 

F 
+ ‖ S S S k +1 ‖ g e −

λ

2 

∥∥U 

U U 

k +1 −U 

U U 

k 
∥∥2 

F 

(26) 

 ( U 

U U 

k +1 , V 

V V 

k , S S S k +1 , e k +1 ) ≤ L ( U 

U U 

k , V 

V V 

k , S S S k +1 , e k +1 ) − λ

2 

∥∥U 

U U 

k +1 −U 

U U 

k 
∥∥2 

F 

(27) 

inally, similar to the development of U 

U U 

k , when updating V V V k , it is 

asy to obtain: 

 ( U 

U U 

k +1 , V V V k +1 , S S S k +1 , e k +1 ) ≤ L ( U 

U U 

k +1 , V V V k , S S S k +1 , e k +1 ) − λ

2 

∥∥V V V k +1 −V V V k 
∥∥2 

F 

(28) 

Adding (23), (24), (27) and (28) , we thus have for all k ≥ 0 , 

 ( U 

U U 

k , V 

V V 

k , S S S k , e k ) − L ( U 

U U 

k +1 , V 

V V 

k +1 , S S S k +1 , e k +1 ) 

≥ λ

2 

∥∥U 

U U 

k +1 −U 

U U 

k 
∥∥2 

F 
+ 

λ

2 

∥∥V 

V V 

k +1 −V 

V V 

k 
∥∥2 

F 
(29) 

rom (29) , we can conclude that the sequence {L ( U 

U U 

k , V V V k , S S S k , e k ) } k ∈ N 
s non-increasing and convergent since L ( U 

U U , V V V , S S S , e ) is bounded

rom below. 

Besides, let N be a positive integer, and we sum (29) from k = 0

o N − 1 to yield: 

λ

2 

N−1 ∑ 

k =1 

∥∥U 

U U 

k +1 −U 

U U 

k 
∥∥2 

F 
+ 

λ

2 

N−1 ∑ 

k =1 

∥∥V 

V V 

k +1 −V 

V V 

k 
∥∥2 

F 

≤ L ( U 

U U 

0 , V 

V V 

0 , S S S 0 , e 0 ) − L ( U 

U U 

N , V 

V V 

N , S S S N , e N ) 

(30) 

ince L ( U 

U U , V V V , S S S , e ) is bounded below, when N → ∞ , we have: 

lim 

→∞ 

( 

N−1 ∑ 

k =1 

∥∥U 

U U 

k +1 −U 

U U 

k 
∥∥2 

F 
+ 

N−1 ∑ 

k =1 

∥∥V 

V V 

k +1 −V 

V V 

k 
∥∥2 

F 

) 

≤ 2 

λ

(
L ( U 

U U 

0 , V 

V V 

0 , S S S 0 , e 0 ) − L ( U 

U U 

N , V 

V V 

N , S S S N , e N ) 
)

≤ ∞ 

(31) 

hus, 

im k →∞ 

‖ U 

U U 

k +1 −U 

U U 

k ‖ F = 0 

im k →∞ 

‖ V 

V V 

k +1 −V 

V V 

k ‖ F = 0 

(32) 

oreover, it is easy to obtain: 

 U U U L ( U 

U U , V 

V V , S S S , e ) = 

∂L ( U 

U U , V 

V V , S S S , e ) 

∂ U 

U U 

= ( X 

X X −U 

U U V 

V V − S S S ) V 

V V 

T 

 V V V L ( U 

U U , V 

V V , S S S , e ) = 

∂L ( U 

U U , V 

V V , S S S , e ) 

∂ V 

V V 

= U 

U U 

T ( X 

X X −U 

U U V 

V V − S S S ) 

(33) 

ccording to (14) and (15) , we know: 

 

 

 = ∂ U U U L ( U 

U U 

k +1 , V 

V V 

k , S S S k +1 , e k +1 ) + λ
(
U 

U U 

k +1 −U 

U U 

k 
)

 

 

 = ∂ V V V L ( U 

U U 

k +1 , V 

V V 

k +1 , S S S k +1 , e k +1 ) + λ
(
V 

V V 

k +1 −V 

V V 

k 
) (34) 

hich amounts to: 

 

 

 1 = ∂ U U U L ( U 

U U 

k +1 , V 

V V 

k +1 , S S S k +1 , e k +1 ) 

 

 

 2 = ∂ V V V L ( U 

U U 

k +1 , V 

V V 

k +1 , S S S k +1 , e k +1 ) 
(35) 

here Q 

Q Q 1 = −λ
(
U 

U U 

k +1 −U 

U U 

k 
)

− ∂ U U U L ( U 

U U 

k +1 , V V V k , S S S k +1 , e k +1 ) + 

 U U U L ( U 

U U 

k +1 , V V V k +1 , S S S k +1 , e k +1 ) = −λ
(
U 

U U 

k +1 −U 

U U 

k 
)

+ X X X 
(
V V V k +1 −V V V k 

)T −
 

 

 

k +1 
(
V V V k +1 −V V V k 

)(
V V V k +1 + V V V k 

)T − S S S k +1 
(
V V V k +1 −V V V k 

)T 
and Q 

Q Q 2 = 

λ
(
V V V k +1 −V V V k 

)
. Moreover, let { U 

U U 

k j } and { V V V k j } be the bounded 

ubsequences of { U 

U U 

k } and { V V V k } , respectively, produced by Algo- 

ithm 1 such that lim k j →∞ 

U 

U U 

k j = U 

U U 

∗ and lim k j →∞ 

V V V k j = V V V ∗, then 

e can conclude that ( U 

U U 

∗, V V V ∗) is the critical point of (7) , because

im k j →∞ 

Q 

Q Q 1 = 0 0 0 and lim k j →∞ 

Q 

Q Q 2 = 0 0 0 . This completes the proof. �
4 
. Experimental results 

In this section, our method is compared with four state-of- 

he-art RPCA algorithms, namely, IALM [12] , GoDec+ [26] , NCR- 

CA [28] and WNNM-RPCA [14] . We evaluate these approaches us- 

ng synthetic data as well as real datasets, and all experiments are 

un on a computer with 3.2 GHz CPU and 16 GB memory. Be- 

ides, for the parameters in the competing algorithms, we adopt 

heir recommended setting. If it is not available, we determine 

heir appropriate values via experiments. In the proposed algo- 

ithm, we set the maximum allowable outer iterations I m 

= 100 

nd η = 10 −6 . 

.1. Results of synthetic data 

The synthetic data model in [40,41] is employed. Two random 

atrices U 

U U ∈ R 

m ×r and V V V ∈ R 

r×n , whose entries satisfy the standard 

aussian distribution, are generated to construct the synthetic ma- 

rix X X X = U 

U U V V V . For convenience, we set m = n , and r = m/ 50 . Impul-

ive noise generated by Gaussian mixture model (GMM) is added 

nto X X X . The probability density function of GMM is: 

p v (v ) = 

1 − c √ 

2 πσ1 

exp 

(
− v 2 

2 σ 2 
1 

)
+ 

c √ 

2 πσ2 

exp 

(
− v 2 

2 σ 2 
2 

)
(36) 

here σ 2 
1 

and σ 2 
2 

are variances with σ 2 
1 


 σ 2 
2 

, and c controls the 

roportion of outliers. In our experiments, to model gross errors, 

e set σ 2 
2 

= 100 σ 2 
1 

and c = 0 . 1 . The signal-to-noise ratio (SNR) of

he impulsive noise is defined as: 

NR = log 10 

( ‖ X 

X X ‖ 

2 
F 

(1 − c) σ 2 
1 

+ cσ 2 
2 

)
(37) 

o test the performance of all algorithms, the root mean square 

rror (RMSE) is employed, given by: 

MSE = 

‖ X 

X X − M 

M M ‖ F √ 

mn 

(38) 

here M 

M M = U 

U U V V V . 

We first discuss the choice of the parameter λ in the proposed 

lgorithm, which is the weight of the proximal term in (14) and 

15) . Fig. 1 plots the curve of RMSE w.r.t. log 10 λ. As can be seen,

MSE is relatively stable when log 10 λ ≤ 0 , while the error in- 

reases when log 10 λ > 0 . In this paper, we set λ = 0 . 001 . 

In addition, all the algorithms are evaluated via different ma- 

rix dimensions and SNRs of GMM, and the average results by 

0 independent runs are tabulated in Table 1 . It is seen that 
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Table 1 

Synthetic data results by different algorithms. 

m = 500 RPCA-HQF IALM GoDec + NCRPCA WNNM-RPCA 

3 dB RMSE 0 . 1508 ± 0 . 0027 0 . 4344 ± 0 . 0078 0 . 1744 ± 0 . 0029 0 . 7842 ± 0 . 0052 0 . 1852 ± 0 . 0034 

Runtime 0.0609 7.7019 0.0549 4.3212 10.489 

6 dB RMSE 0 . 1074 ± 0 . 0019 0 . 3102 ± 0 . 0048 0 . 1242 ± 0 . 0022 0 . 7533 ± 0 . 0052 0 . 1324 ± 0 . 0023 

Runtime 0.0575 9.4670 0.0499 4.1120 8.6189 

9 dB RMSE 0 . 0757 ± 0 . 0011 0 . 2190 ± 0 . 0034 0 . 0873 ± 0 . 0012 0 . 7191 ± 0 . 0037 0 . 0933 ± 0 . 0014 

Runtime 0.0588 10.842 0.0449 4.1463 7.2874 

12 dB RMSE 0 . 0534 ± 0 . 0 0 06 0 . 1551 ± 0 . 0017 0 . 0614 ± 0 . 0 0 09 0 . 6826 ± 0 . 0020 0 . 0659 ± 0 . 0010 

Runtime 0.0579 11.301 0.0435 3.9881 6.5494 

15 dB RMSE 0 . 0383 ± 0 . 0 0 08 0 . 1108 ± 0 . 0021 0 . 0440 ± 0 . 0010 0 . 6568 ± 0 . 0020 0 . 0426 ± 0 . 0011 

Runtime 0.0585 10.089 0.0410 3.8308 5.6711 

m = 10 0 0 RPCA-HQF IALM GoDec + NCRPCA WNNM-RPCA 

3 dB RMSE 0 . 2141 ± 0 . 0020 0 . 6185 ± 0 . 0054 0 . 2477 ± 0 . 0022 0 . 7465 ± 0 . 0142 0 . 4387 ± 0 . 0115 

Runtime 0.2305 61.639 0.2301 26.834 124.58 

6 dB RMSE 0 . 1514 ± 0 . 0012 0 . 4372 ± 0 . 0033 0 . 1747 ± 0 . 0013 0 . 6240 ± 0 . 0058 0 . 1860 ± 0 . 0014 

Runtime 0.2261 57.477 0.2133 25.253 89.090 

9 dB RMSE 0 . 1072 ± 0 . 0 0 08 0 . 3104 ± 0 . 0023 0 . 1236 ± 0 . 0 0 09 0 . 5768 ± 0 . 0044 0 . 1322 ± 0 . 0010 

Runtime 0.2296 72.376 0.1909 23.940 65.024 

12 dB RMSE 0 . 0757 ± 0 . 0 0 06 0 . 2196 ± 0 . 0013 0 . 0873 ± 0 . 0 0 06 0 . 5448 ± 0 . 0026 0 . 0935 ± 0 . 0 0 06 

Runtime 0.2328 68.210 0.1802 23.243 51.074 

15 dB RMSE 0 . 0536 ± 0 . 0 0 04 0 . 1553 ± 0 . 0012 0 . 0616 ± 0 . 0 0 05 0 . 5110 ± 0 . 0017 0 . 0661 ± 0 . 0 0 06 

Runtime 0.2294 81.534 0.1632 22.393 39.355 

where Runtime is in seconds. 
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Table 2 

Recovered results of four videos by different algorithms . 

RPCA-HQF IALM GoDec + NCRPCA WNNM-RPCA 

cubicle Iter . 6 128 7 63 171 

Runtime 3.6238 99.847 1.2171 65.708 66.130 
‖ S S S ‖ 0 
mn 

0.0499 0.9541 1 1 0.9709 

F m 0.7295 0.5516 0.4220 0.5897 0.7299 

blizzard Iter . 6 117 20 62 172 

Runtime 3.8491 92.069 2.1405 60.075 66.433 
‖ S S S ‖ 0 
mn 

0.0290 0.9602 1 1 0.9952 

F m 0.7204 0.7101 0.6398 0.6630 0.7163 

skating Iter . 6 120 9 62 171 

Runtime 2.0748 53.269 0.8001 32.868 39.243 
‖ S S S ‖ 0 
mn 

0.0601 0.9446 1 1 0.9946 

F m 0.6322 0.5793 0.5155 0.5796 0.6309 

overpass Iter . 6 136 14 100 171 

Runtime 3.2581 95.762 1.8741 88.3182 78.802 
‖ S S S ‖ 0 
mn 

0.0889 0.9158 1 1 0.9954 

F m 0.5685 0.4146 0.4395 0.4847 0.5678 

park Iter . 6 107 20 100 169 

Runtime 4.5556 99.547 3.5304 109.06 112.53 
‖ S S S ‖ 0 
mn 

0.0219 0.9660 1 1 0.9958 

F m 0.4933 0.4856 0.4821 0.4747 0.4923 

where ‖ S S S ‖ 0 denotes the total number of non-zero elements in S S S , and m and n are 

matrix column and row lengths. 
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he proposed method has smaller RMSEs, implying that the for- 

er achieves more accurate low-rank recovery, compared with the 

ompeting algorithms. Moreover, RPCA-HQF requires less computa- 

ional time than IALM, NCRPCA and WNNM-RPCA, and has compa- 

able runtime to GoDec+. We now explain why RPCA-HQF attains 

ood recovery performance in the following. First, it is known that 

he � 1 -norm is more vulnerable to big outliers compared to non- 

onvex functions, because the influence function of the former is 

ot redescending [7,41] . Furthermore, the � 1 -norm as the regular- 

zation term leads to the bias problem [28,42] . Since IALM and 

NNM-RPCA employ the � 1 -norm to resist outliers and achieve 

parseness, RPCA-HQF is superior to them, because we use non- 

onvex regularization. For the GoDec+ and NCRPCA, although they 

everage non-convex functions, i.e., Welsch function and � p -norm 

 0 < p < 1 ), respectively, to resist gross errors, the parameters that

ontrol robustness in their methods are set manually, compared to 

PCA-HQF, whose parameter e is adjusted in a data-driven manner 

ccording to MADN. 

.2. Real-world applications 

In this subsection, we apply the proposed algorithm on two 

ypical RPCA applications [10] , i.e., background /foreground sepa- 

ation for videos and shadow/specularity removal for face images, 

o validate its effectiveness. 

.2.1. Background modeling from video 

We first test all the methods on the video foreground- 

ackground separation problem since RPCA can decompose 

he video into low-rank and sparse components, correspond- 

ng to static background and moving objects, respectively. Four 

ideos from CDnet 2014 [39] dataset, namely, cubicle (240 ×
52 for each frame ) , blizzard (240 × 360) , skating (180 × 270) , 

verpass (240 × 320) and park (288 × 352) , are employed. We 

hoose 200 successive frames for each video and stack each frame 

s a column to construct X X X . Taking cubicle as an example, af- 

er frame vectorization, we have X X X ∈ R 

84480 ×200 . Besides, Gaus- 

ian noise with variance being 0.001 is added into the data ma- 

rix. Since the background is almost static, we set the rank r = 1 .

he foreground-background separation results by different meth- 

ds are shown in Fig. 2 . It is easy to observe that the recov-

red backgrounds by our algorithm are more visually clear than 
5 
ALM, GoDec+ and NCRPCA. For example, the backgrounds ob- 

ained by IALM, GoDec+ and NCRPCA, contain ghost, and the fore- 

rounds obtained by our algorithm are clearer, compared with 

hat by the competing methods, which contain noticeable Gaussian 

oise. Four performance metrics, namely, iteration number ( Iter . ), 

untime in seconds, sparseness in foreground ( ‖ S S S ‖ 0 / mn ) and F- 

easure, are used. For the F-measure, given true positive (TP), false 

ositive (FP), false negative (FN) and true negative (TN), it is de- 

ned as [43] : 

 m 

= 

2 × precision × recall 

precision + recall 
(39) 

here precision = 

TP 
TP+FP and recall = 

TP 
TP+FN . Numerical average 

valuation results by 20 independent runs for all algorithms are 

abulated in Table 2 . Although both RPCA-HQF and WNNM-RPCA 

an attain good low-rank background recovery, the former needs 
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Fig. 2. Background and foreground separation results of different algorithms on the real videos. Images from (a) to (b) are original images, recovered results by RPCA-HQF, 

IALM, GoDec+, NCRPCA and WNNM-RPCA, respectively. 
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horter computational time, and the reason why our method has 

learer foreground is that RPCA-HQF has smaller ‖ S S S ‖ 0 / mn . 

.2.2. Shadow and specularity removal from face images 

Another popular application of RPCA is to remove shadows and 

pecularities from face images. Although different lighting condi- 

ions may create challenges for face recognition, if we have enough 

ace images of the same person, RPCA methods can extract the 

ace features and remove the shadows and specularities since the 

atter are sparse and have large magnitudes. The extended Yale 

 dataset [26] , which includes 38 human subjects, is utilized to 

ompare different algorithms. There are about 64 images under 
6 
 poses and 64 illumination conditions with dimensions being 

92 × 168 for each subject. To evaluate the robustness [26] of all 

he methods, 10 dB Gaussian noise, 10 dB impulsive noise gener- 

ted by GMM model and random occlusions are added to the im- 

ges, and the restoration results are shown in Fig. 3 . We observe 

hat RPCA-HQF extracts the face features well (the second column 

orresponds to the recovered images obtained by RPCA-HQF) and 

ttains clearer recovery results than other algorithms. Table 3 tabu- 

ates the average iteration number and runtime via 20 independent 

uns for different approaches, and the proposed method requires 

he least runtime, compared to the competing algorithms. 
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Fig. 3. Shadow and specularity removal from faces. Images from column (b) to (f) are recovered images by RPCA-HQF, IALM, GoDec+, NCRPCA and WNNM-RPCA, respectively. 

In column (a), face-1 to face-4 from Sub ject 15 are original images, corrupted images by Gaussian noise, GMM noise and occlusions, respectively. Similarly, face-5 to face-8 

from Sub ject 25 are original images, corrupted images by Gaussian noise, GMM noise and occlusions, respectively. 

7 
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Table 3 

Runtime comparison for different algorithms. 

Method RPCA-HQF IALM GoDec + NCRPCA WNNM-RPCA 

Iter. Runtime Iter. Runtime Iter. Runtime Iter. Runtime Iter. Runtime 

face-1 6 0.3393 223 16.087 22 0.4009 59 5.1247 178 10.674 

face-2 6 0.4254 183 12.651 26 0.4668 100 8.7044 178 10.847 

face-3 6 0.3960 201 14.529 26 0.4764 100 9.4420 178 10.531 

face-4 6 0.3329 232 17.040 22 0.4023 58 4.9986 176 10.606 

face-5 6 0.3691 230 17.219 34 0.6422 58 5.2003 178 11.582 

face-6 6 0.4560 189 13.462 36 0.6656 100 8.9083 178 11.416 

face-7 6 0.4275 209 15.129 35 0.6545 100 8.8825 178 11.204 

face-8 6 0.3645 242 17.602 27 0.5102 58 4.7273 176 11.479 
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. Conclusion 

In this paper, to avoid SVD calculation, we devise an efficient 

PCA algorithm based on factorization and HQF regularization. Al- 

hough HQF is non-convex, we solve the resultant optimization 

roblem efficiently since its proximity operator is derived. In addi- 

ion, proximal BCD is utilized to find the solutions to the low-rank 

omponents, and the complexity as well as convergence of our 

ethod are analyzed. Our experimental results demonstrate that 

ompared with IALM, GoDec+, NCRPCA and WNNM-RPCA, RPCA- 

QF achieves more accurate low-rank and sparse restoration per- 

ormance. Furthermore, the loss function and the corresponding 

heoretical analysis can be extended to one-dimensional sparse re- 

overy and tensor recovery in the presence of outliers. 
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