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Abstract—In the problem of image inpainting, one popular ap-
proach is based on low-rank matrix completion. Compared with
other methods which need to convert the image into vectors or
dividing the image into patches, matrix completion operates on the
whole image directly. Therefore, it can preserve latent information
of the two-dimensional image. An efficient method for low-rank
matrix completion is to employ the matrix factorization technique.
However, conventional low-rank matrix factorization-based meth-
ods often require a prespecified rank, which is challenging to
determine in practice. The proposed method factorizes an image
matrix as a sum of rank-one matrices so that it does not require rank
information in advance as it can be automatically estimated by the
algorithm itself when the algorithm has satisfactorily converged.
In our study, matching pursuit is applied to search for the best
rank-one matrix at each iteration. To be robust against impulsive
noise, the residual error between the observed and estimated ma-
trices is minimized by �p-norm with 0 < p < 2. Then the resul-
tant �p-norm minimization is solved by the iteratively reweighted
least squares method. The proposed model is beneficial for the
robustness against outliers, and does not require rank information.
Experimental results verify the effectiveness and higher accuracy
of the proposed method with comparison to several state-of-the-art
matrix completion-based image inpainting approaches.

Index Terms—Image inpainting, low-rank matrix completion,
outlier-robustness, �p-minimization, matching pursuit.

I. INTRODUCTION

IMAGE inpainting is a fundamental task in image processing,
which is a restoration procedure where damaged, deterio-

rating, or missing parts of a digital image are reconstructed.
With the recent development in image processing techniques,
it has been gained even more popularity. One class of image
inpainting approaches is based on patch processing, includ-
ing [1]-[4], where the impaired image is divided into a number of
patches which are small areas of the whole image. Ultimately the
restored image is constructed by combining all these individual
results. The above operation has one major defect that the
processing is imposed on intermediate (patch) results, rather
than on the whole image, which may miss latent information.
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In addition, these methods are at the cost of high computational
cost and memory usage.

Another type of image inpainting methods operates on the
whole image directly, which restores pixels via the low-rank
matrix completion technique. The matrix completion method
can retain the potentially two-dimensional information of the
target image. A variety of matrix completion techniques for
image inpainting have been proposed, such as singular value
thresholding (SVT) [10], fixed point continuation (FPC) [11],
accelerated proximal gradient descent (APG) [12] and trun-
cated nuclear norm regularization (TNNR) [8]. Since these
methods require computing full (or truncated) singular value
decomposition (SVD) at each iteration, they are computation-
ally demanding, especially for processing large-size images.
To decrease computational complexity, approaches based on
low-rank matrix factorization are proposed, such as low-rank
matrix fitting (LMaFit) [13], alternating minimization for matrix
completion (AltMinComplete) [14] and subspace evolution and
transfer (SET) [15]. They convert the estimated matrix as a
product of two matrices which have much smaller dimensions.
However, they require a prior rank information of the observed
matrix, and determining the rank of a real-world image matrix
is difficult in practice. To address this issue, rank-one matrix
completion with ε (R1MC-ε) [16] and rank-one matrix comple-
tion (R1MC) [30] have been proposed to factorize the estimated
matrix into a sum of rank-one matrices and employ �1-norm
to automatically estimate the matrix rank. It is worth noting
that the above methods rely on the assumption of noise-free or
Gaussian noise since their algorithm development is based on
the �2-space optimization. The presence of outliers may lead
to serious degradation of inpainting performance. Accordingly,
algorithms based on �p-norm with 0 < p < 2 are proposed, such
as alternating projection (AP) [17], �p-regression (�p-reg) [23]
and variational Bayesian matrix factorization based on L1-norm
(VBMFL1) [19]. Nevertheless, AP requires predicting a prior
noise factor on �p-norm in advance, which is difficult to achieve
in practice. Regarding �p-reg, it needs the matrix rank informa-
tion. Another robust matrix completion approach is proximal
alternating robust subspace minimization (PARSuMi) [18]. It
also requires a prior parameter, that is, the upper bound of the
number of outliers.

In this work, motivated by rank-one matrix approximation,
we devise a simple and efficient matrix completion algorithm
for image inpainting. Different from conventional methods, it is
not only robust to outliers, but also does not require rank or noise
information. Primarily, the estimated matrix is approximated
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as a sum of rank-one matrices in the proposed model. Then,
we employ �p-norm with 0 < p < 2 to minimize the residual
between the given matrix and estimated matrix, which enables
robustness. In each iteration, we use greedy pursuit to search
for the optimal rank-one matrix, where the rank-one matrix
is represented by a product of two vectors. Last but not the
least, our model can be implemented in a distributed or parallel
manner, which can greatly reduce computing time with multiple
terminals or threads.

II. PROBLEM FORMULATION

For a gray-scale image, it can be mathematically represented
as a matrix, defined asXXX ∈ Rm×n. Assume there are some miss-
ing pixels (holes) in the incomplete matrixXXXΩ, it is modeled as:

XXXΩ =XXX � Ω (1)

Herein, � is the element-wise multiplication operator.
Ω ∈ Rm×n is a binary matrix comprised of 0 and 1, where 0 and
1 mean those entries inXXXΩ are missing and known, respectively.
It has been studied that the image matrix has an approximately
low-rank structure [8]. Therefore, given an incomplete image
matrix XXXΩ containing noise, the image inpainting problem can
be formulated as:

min
MMM

rank(MMM), s.t. ||XXXΩ −MMMΩ||F ≤ δ (2)

where || · ||F denotes the Frobenius norm of a matrix, and δ > 0
is a tolerance parameter to balance the fitting error. Unfortu-
nately, the rank minimization problem is NP-hard in general
since the rank is discrete and nonconvex. To handle this issue,
nuclear norm minimization is proposed to relax rank minimiza-
tion [9], which is analogous to the strategy of approximating
the �0-norm by �1-norm in compressed sensing [5]. In [6], it is
verified that the nuclear norm is the convex envelope of rank.
Whereafter, Candès and Tao have proved that one can solve the
matrix completion problem via minimizing nuclear norm with a
high probability [7]. Hence, (2) is approximately transformed to:

min
MMM

||MMM ||∗, s.t. ||XXXΩ −MMMΩ||F ≤ δ (3)

where || · ||∗ represents the nuclear norm of a matrix, that is,
the sum of all singular values of the matrix. There are many
state-of-the-art approaches proposed to deal with (3). The first
class is to solve (3) directly via computing SVD, including
SVT, FPC, APG, to name just a few which do not require rank
information. However, it is well known that computing SVD
will pay an expensive computational cost. Another popular
category is based on the matrix factorization technique, which
can avoid SVD computation but they require rank information,
corresponding to the following optimization:

min
UUU,VVV

||XXXΩ − (UUUVVV )Ω||2F (4)

where UUU ∈ Rm×r and VVV ∈ Rr×n with r being the rank of
the target matrix. Then, the target matrix can be calculated by
MMM = UUUVVV after determiningUUU andVVV . However, impulsive noise
appears in many practical scenarios, such as salt-and-pepper
noise in an image. It is well known that �2-space optimization
cannot resist impulsive noise effectively. In contrast, �p-norm

is able to resist impulsive noise since it reduces the effect
of outliers via calculating the residual to power of p with
0 < p < 2. To be robust against impulsive noise, Zeng and
So [23] replace Frobenius norm by �p-norm, leading to:

min
UUU,VVV

||XXXΩ − (UUUVVV )Ω||pp (5)

where || · ||pp of a matrix EEE is defined as ||EEE||pp =
∑

i,j |[EEE]ij |p.
However, (4) and (5) are based on an ideal assumption that we
have known the rank of the observed matrix.

III. �p-NORM MATCHING PURSUIT

Given MMM ∈ Rm×n, it can be decomposed into a linear com-
bination of rank-one matrices, that is:

MMM ≈
K∑

k=1

MMMk (6)

where MMMk = uuukvvv
T
k [22] with uuuk ∈ Rm and vvvk ∈ Rn, and the

target rank K is equal to the number of iterations when the pro-
posed method converges, where convergence means that residual
RRRk (defined below) decreases very slowly. Then, to achieve
robustness to impulsive noise, (4) combined with �p-norm is
rewritten as:

min
MMM

||XXXΩ −MMMΩ||pp (7)

Wang et al. have proposed to utilize the greedy pursuit method
to solve (7) with p = 2 [27]. In our work, we employ greedy
pursuit to tackle (7) with 0 < p < 2 which can search for the
best rank-one basis matrix of the current residual RRRk at the kth
iteration, which is formulated as:

min
uuuk,vvvk

||RRRk − (uuukvvv
T
k )Ω||pp (8)

where RRRk =XXXΩ − (
∑k−1

i=1 uuuivvv
T
i )Ω with k ≥ 2 and RRR1 =XXXΩ.

In the following, we adopt the alternating minimization
method [23] to solve uuuk and vvvk and omit k for the sake of pre-
sentation simplicity. Firstly, we fix variable vvv and then optimize
uuu, resulting in:

uuuq = argmin
uuu

||RRR− (uuu(vvvq−1)T )Ω||pp (9)

where q means the qth iteration in the alternating minimization
process. Define (rrri)

T ∈ Rn and (ui)
q as the ith row of RRR and

the ith entry of uuuq , respectively. Since each (ui)
q is determined

by (rrri)
T and (vvvq−1)T , (9) is equivalent to solving the following

m independent sub-problems:

(ui)
q = argmin

ui

||(rrri)T − (ui(vvv
q−1)T )Ii ||pp (10)

where Ii ∈ Rn denotes the ith row of Ω. Because RRRk =XXXΩ −
(
∑k−1

i=1 uuuivvv
T
i )Ω, (rrri)T = ((rrri)

T )Ii . It is easy to find that the
residual between ((rrri)

T )Ii and ((ui(vvv
q−1)T )Ii is only affected

by all known elements in ((rrri)
T )Ii and (vvvq−1)T )Ii . Therefore,

(10) can be simplified as:

(ui)
q = argmin

ui

||(aaai)T − uibbb
T ||pp (11)

where (aaai)
T ∈ R||Ii||1 and bbbT ∈ R||Ii||1 only contain known

entries in (rrri)
T and (vvvq−1)T , respectively, without changing
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Algorithm 1: �p-MP for Matrix Completion.

Input: XXXΩ

Initialize: RRR1 =XXXΩ, and randomize vvv0
for k = 1, 2, · · · do

1) vvv0k = vvvk−1

for q = 1, 2, · · · do
2) Calculate uuuq

k = argminuuuk
||RRRk − (uuuk(vvv

q−1
k )T )Ω||pp

3) Calculate vvvqk = argminvvvk
||RRRk − (uuuq

kvvv
T
k )Ω||pp

end for
4) RRRk+1 = RRRk − (uuuk(vvvk)

T )Ω
Stop if stopping criterion is met.

end for
Output: MMM =

∑k
i=1 uuuivvv

T
i

the order of entries where || · ||1 is the �1-norm of a vector.
Keeping the order of elements means from (rrri)

T = [1, 0, 3, 0, 2]
to (aaai)

T = [1, 3, 2] with Ii = [1, 0, 1, 0, 1].
For 1 ≤ p < 2, (11) can be efficiently solved by the iteratively

reweighted least squares (IRLS) method [25], [26] which pro-
vides global convergence. While for 0 < p < 1, it only searches
for a stationary point. At the tth inner iteration of IRLS, it solves
a weighted LS problem as follows:

((ui)
q)t+1 = arg min

(ui)q
||((aaai)T − (ui)

qbbbT )wwwt||22 (12)

where wwwt ∈ R||Ii||1 , and the nth element of wwwt is calculated as
wt

n = 1/(|τ tn|
2−p
2 ) with τ tn being the nth element of the residual

vector τττ t = (aaai)
T − ((ui)

q)tbbbT with ((ui)
q)0 = bbbTaaai/bbb

Tbbb. In
the IRLS, the computational complexity is O(||Ii||1T ) for each
(ui)

q where T is the iteration number to converge. Note that T
is independent from the dimension of XXXΩ and with a value of
several tens [25]. Therefore, the complexity for solving (9) is
O(||Ω||1T ) with ||Ω||1 � mn because

∑m
i=1 ||Ii||1 = ||Ω||1.

Next, we optimize vvv via fixing uuu. Specifically, we have:

vvvq = argmin
vvv

||RRR− (uuuqvvvT )Ω||pp (13)

Because of the same structure of (9) and (13), vvv can be updated
by a similar manner, with the following n independent sub-
problems:

(vj)
q = argmin

vj

||(rrrj)Jj
− (vjuuu

q)Jj
||pp (14)

where vj , rrrj ∈ Rm and Jj ∈ Rm are the jth element of vvv, the
jth column of RRR and the jth column of Ω, respectively. After
removing missing elements in rrrj and uuu, (14) is rewritten as:

(vj)
q = argmin

vj

||cccj − vjddd||pp (15)

where both cccj and ddd ∈ R||Jj ||1 . (15) can be solved by IRLS as
well. The complexity for solving (13) is alsoO(||Ω||1T ). Hence,
the total complexity is O(K||Ω||1TQ) with K � min(m,n)
whereQ is the number of iterations for alternating minimization.
Empirically, Q with the value of several tens satisfies conver-
gence. Moreover, a distributed or parallel realization can be
applied to solving uuu and vvv. The processing time will sharply
decrease via multiple terminals or threads.

All steps of the proposed method are summarized in Algo-
rithm 1, which is referred to �p-matching pursuit (�p-MP). In this
work, we define E(uuuq

k, vvv
q
k) = ‖RRRk − uuuq

k(vvv
q
k)

T ‖pp/‖RRRk‖pp and

σ = E(uuuq
k, vvv

q
k)− E(uuuq+1

k , vvvq+1
k ). The smaller value of E(uuuq

k, vvv
q
k)

is, the closer uuuq
k(vvv

q
k)

T is to RRRk. If σ is less than 10−5, we
say that uuuk and vvvk have satisfactorily converged at the qth
iteration. For the outer iteration, the convergence condition is
η = ||RRRk||pp/||XXXΩ||pp − ||RRRk+1||pp/||XXXΩ||pp ≤ 5× 10−4.

The convergence of �p-MP is studied in the following
proposition. Beforehand, we introduce the concept of �p-

correlation [29], defined as θp(aaa,bbb) = 1− minα∈R ‖bbb−αaaa‖pp
‖bbb‖pp . It is

easy to know that 0 ≤ θp(aaa,bbb) ≤ 1 and minα∈R ‖bbb− αaaa‖pp =
(1− θp(aaa,bbb))‖bbb‖pp.

Proposition 1: The residual error of matching pursuit, de-
fined as RRRk, is monotonically non-increasing with a lower
bound, therefore it is convergent to a limit point.

Proof: Minimizing ‖RRRk − uuukvvv
T
k ‖pp with respect to uuuk at the

kth iteration, we have:

min
uuu

‖RRRk − uuuvvvTk−1‖pp =

m∑

i=1

min
ui

||rrri − (ui(vvvk−1)
T )||pp

=

m∑

i=1

(1− θp(vvvk−1, rrri))‖rrri‖pp

≤
m∑

i=1

‖rrri‖pp = ‖RRRk‖pp

Note thatvvvk−1 is random due to random initialization. We obtain
minvvv ‖RRRk − uuukvvv

T ‖pp ≤ ‖RRRk‖pp via minimizing ‖RRRk − uuukvvv
T
k ‖pp

with respect to vvvk at the kth iteration in the same way. Hence,
‖RRRk+1‖pp = minuuuk,vvvk

‖RRRk − uuukvvv
T
k ‖pp ≤ ‖RRRk‖pp. �

This means the residual error RRRk does not increase at each
iteration. Moreover, its lower bound is 0. Therefore, MP based
on �p-norm is convergent. Moreover, the convergence of �p-
norm minimization has been proved by the Proposition 1 in [28].
Combining the results from the convergence analysis of MP and
�p-norm minimization, it is verified that �p-MP is convergent.

Compared with �p-reg, their operations are different although
�p-MP and �p-reg employ the IRLS method to optimize the �p-
norm of residual. Herein, �p-MP utilizes IRLS to search for
a scalar, while, IRLS is used to calculate a vector in �p-reg.
Moreover, �p-MP does not require rank information, however
calculating a rank is a prerequisite for �p-reg.

IV. EXPERIMENTAL RESULTS

We adopt three images from [20], [21]. The salt-and-pepper
noise is generated by the function “imnoise(X̃XX , ‘salt &amp;
pepper’, ρ)” in MATLAB, where X̃XX is the image matrix, ρ is the
normalized noise intensity which is related to signal-to-noise
(SNR) as ρ = 1/SNR. Peak signal-to-noise ratio (PSNR) is
widely used to evaluate the quality of a restored image, which
is defined as:

PSNR = 10× log10

(
(2b − 1)2

MSE

)

(16)
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Fig. 1. Noisy image with missing data and recovered images.

Fig. 2. PSNR versus SNR in salt-and-pepper noise.

Fig. 3. PSNR versus percentage of missing data in salt-and-pepper noise at
SNR = 9 dB.

where b = 8 is the number of bits per sample value, and MSE =
1

mn ||X̂XX −XXX||2F is the mean square error.
We compare the performance of �p-MP with �p-reg, AP,

VBMFL1, PARSuMi, SVT, R1MC and OR1MP [27]. Simu-
lation results on the first image are shown in Fig. 1, where
SNR= 5dB. The best rank used in �p-reg and VBMFL1 is 6 [23].
SVT, R1MC and OR1MP are not robust to salt-and-pepper noise
and they fail in restoring the image. Obviously, �p-MP, �p-reg,
and VBMFL1 can obtain a satisfactory result. However, the
VBMFL1 is still inferior to �p-reg with p = 1 since VBMFL1

does not restore lamps on the wall. The proposed method is
better than �p-reg with p = 1 from observing the bottom row of
windows. For the recovered image from �p-MP, lamps on the
wall are still a little fuzzy. The PSNRs of �p-MP, �p-reg and
VBMFL1 are 27.21dB, 25.84dB, and 25.71dB, respectively.

The performance of the proposed method versus SNR is
plotted in Fig. 2, where 30% elements are missing. Since R1MC,
OR1MP and SVT are not robust to impulsive noise, the corre-
sponding results are not included. 6 is also the best rank of the
first image for AP and PARSuMi [23]. We see that the proposed
method performs best in the case of impulsive noise with higher
PSNR compared with others.

The impact of the percentage of missing data is also investi-
gated. Fig. 3 shows the PSNR versus the percentage of missing
data. We see that the PSNR of �p-MP is higher than the others
from 20% to 70%. In particular, �p-MP is prominent at a low
percentage of missing data.

The impact of p is studied in Fig. 4. It is seen that the proposed
method with p = 1.2 has the highest PSNR for different levels

Fig. 4. PNSR versus p in different levels of salt-and-pepper noise with 50%
missing data.

Fig. 5. Different noisy images with missing values and recovered results with
different methods.

of salt-and-pepper noise. Note that this consequence is expected
to be universal for image data which is normalized to the range
from 0 to 1 since the impact of p is affected by the amplitude of
impulsive noise which is a fixed value (0 or 1) for salt-and-pepper
noise. The reason why we adopt p = 1 in �p-MP is to keep
consistent with the value of p in AP and �p-reg. We also see the
performance that of 0 < p < 1 is worse than that of p = 1. A
possible explanation regarding the inferiority of using a smaller
value of p is that the corresponding �p-norm is non-convex and
non-smooth, leading to poorer local solutions.

We then test other images. The best rank of the first image
for �p-reg and VBMFL1 is set to 6 [23]. After extensive trials,
the best ranks of the second image are determined as 15 and
10 for �p-reg and VBMFL1, respectively. Fig. 5 shows the
original images, images with 40% missing information and
salt-and-pepper noise at SNR = 9dB, and recovered images
from various methods. Note that the results of SVT, R1MC and
OR1MP are not included since they are robust to impulsive noise.
The PSNRs of the recovered image are shown at the bottom of
each recovered image. It is observed that the proposed algorithm
is the most robust to impulsive noise and yields the best recovery
performance in terms of PSNR.

V. CONCLUSION

Many conventional matrix completion-based methods for
image inpainting require the SVD computation, and/or user-
defined parameters (e.g. rank and bound of outliers). To over-
come these issues, we have combined greedy pursuit, low-rank
matrix factorization and �p-norm minimization with 0 < p < 2
to devise a computationally efficient algorithm for image in-
painting. We model the estimated matrix as a sum of rank-one
matrices, and then minimize �p-norm of residual error between
the observed and estimated matrices. Simulation results demon-
strate that the �p-MP algorithm is superior to the AP, �p-reg,
VBMFL1 and PARSuMi in terms of recovery performance and
outlier-robustness.
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