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Abstract—Matrix completion refers to recovering a matrix
from a small subset of its entries. It is an important topic
because numerous real-world data can be modeled as low-rank
matrices. One popular approach for matrix completion is based
on low-rank matrix factorization, but it requires knowing the
matrix rank, which is difficult to accurately determine in many
practical scenarios. We propose a novel algorithm based on rank-
one approximation that a matrix can be decomposed as a sum
of outer products. The key idea is to find the basis vectors of
the underlying matrix according to the observed entries, and
gradually increase the vector number until an appropriate rank
estimate is reached. In contrast to the conventional rank-one
schemes that employ unchanging rank-one basis matrices, our
algorithm performs completion from the vector viewpoint and is
able to generate continuously updated rank-one basis matrices.
Besides, we theoretically show that the developed method has
a linear convergence rate and a smaller recovery error than
existing rank-one based algorithms. Experimental results using
both synthetic data and real-world images demonstrate that our
solution has the best recovery performance among the competing
algorithms when the observations are contaminated by Gaussian
noise.

Index Terms—Low-rank matrix completion, rank-one approxi-
mation, basis vector, linear convergence, alternating minimization

I. INTRODUCTION

ATRIX completion [1]-[3] aims to recover the missing

entries given incomplete data and has been widely
used in a burst of areas of science and engineering such as
background initialization [4], [5], recommender system [6],
[7], hyperspectral remote sensing [8], image inpainting [9],
image super-resolution [10], multi-task learning [11] and deep
learning [12], [13]. This is because many real-world data
can be considered as low-rank matrices, whose rank is much
smaller than the number of columns or rows. For example, the
reason why matrix completion can recover the missing pixels
of images is that their main information often concentrates on
a subspace of much lower dimensionality [14], [15].

Matrix completion can be formulated as a constrained rank
minimization problem [16]. Unfortunately, this problem is in
general NP-hard since the rank is discrete and nonconvex.
Meanwhile, nuclear norm minimization is exploited to solve
matrix completion and theoretical guarantees can be found
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in [17]. Generally, nuclear norm minimization is recast as
a semi-definite program (SDP) [18], [19], and hence can be
solved by the interior-point method [20], [21], but its computa-
tional complexity is as high as O(p(m+n)3+p?(m+n)2+p?),
where p, m,n denote the numbers of observed entries, rows
and columns of the target matrix with missing entries, re-
spectively. On the other hand, more computationally efficient
algorithms such as singular value thresholding (SVT) [22],
fixed point continuation with approximating singular value
decomposition (FPCA) [23], and accelerated proximal gradient
with linesearch (APGL) [24], have been proposed. Cao et
al. [10] utilize augmented Lagrange multiplier method to
achieve image interpolation via nuclear norm minimization.
However, these approaches still involve full singular value
decomposition (SVD) at each iteration, resulting in high
computational load, particularly for large-size matrices.

Another methodology, including singular value projec-
tion (SVP) [25], normalized iterative hard thresholding
(NIHT) [26], and alternating projection (AP) [27], directly
exploits the matrix completion problem with a rank constraint
to attain a low-rank solution. In particular, both SVP and NIHT
employ the gradient projection descent. Different from the
nuclear norm based methods requiring full SVD calculation,
SVP and NIHT only need truncated SVD to obtain the » dom-
inant singular values and the corresponding singular vectors,
resulting in complexity reduction. Here, r can be considered
as an optimum rank value of the matrix, and although some
methods [28], [38] aim to find a good estimation for r, their
performance is sensitive to the choice of r.

To avoid performing SVD, low-rank matrix factorization
approaches [29]-[34] have also been suggested. The key idea
is to employ the product of two much smaller matrices to
approximately fit the objective matrix so that the low-rank
property is automatically fulfilled. Among them, low-rank
matrix fitting (LMaFit) [32] is proposed, but it lacks the global
convergence guarantees. Keshavan et al. [34] reformulate the
LMaFit model into an SVD form and propose a gradient
descent algorithm as the solver. In order to overcome the
slow convergence of gradient descent, alternating minimization
for matrix completion (AltMincomplete) [35] is proposed.
Recently, Zhu et al. [30], [31] have shown that the low-rank
matrix completion problem based on matrix factorization has
no spurious local minima and obeys the strict saddle property
which requires the cost function to have a directional negative
curvature at all critical points but local minima, if the matrix
completion cost function satisfies certain conditions. In other
words, global optimality in low-rank matrix completion can
be achieved with a well-conditioned cost function. Besides,
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Li et al. [36] have analysed that the proximal alternating
minimization (PAM) can converge to a second-order stationary
point via random initialization under some mild conditions,
which means that the PAM can avoid strict saddle points and
attain the optimal solution. Furthermore, it is proved [37] that
the optimal solution of low-rank matrix completion can be
obtained even without the regularization as required in [30],
[31]. However, these factorization based methods also require
prior knowledge of rank » which may not be available in many
real-life situations.

The last type of methods utilizes successive rank-one based
matrix completion [38]-[44], which can meet the low-rank
property explicitly. Their key idea is to exploit the fact that any
low-rank matrix can be expressed as a sum of r rank-one ma-
trices, and the most well-known representation is SVD where
the left-singular vectors are orthonormal and so are right-
singular vectors. Wang et al. [40], [41] propose the orthogonal
rank-one matrix pursuit (ORIMP) algorithm and its com-
putationally efficient variant, namely, the economic ORIMP
(EORIMP) algorithm by using orthogonal matching pursuit
(OMP) [45], [46]. The main difference between ORIMP and
EORIMP is the way to refine the weights of the rank-one basis
matrices after completing the current outer iteration. Compared
with ORIMP, EORIMP can reduce the storage complexity
without increasing too much the recovery error, which is vital
for large-scale data. However, these algorithms do not update
the previously computed rank-one basis matrices at the end
of each iteration, although they revise the weights during the
process. Likewise, Shi et al. [38] propose another rank-one
matrix completion method called LIMC-RF. Their first step
is to estimate the rank of the original matrix by using [;-
norm regularization, and then perform truncated SVD at each
iteration for matrix completion. However, the performance of
[38] is sensitive to the matrix rank. If the rank estimated by
the [;-norm is higher or lower than the true rank, it will lead
to a poor recovery performance. As the iteration is updated
by computing the truncated SVD, expensive computation is
also involved, especially for the large-size problems. Thirdly,
this method is not robust to disturbance, and even a small
noise level can give rise to a large degradation in the recovery
accuracy.

In this paper, we devise a matrix completion algorithm using
sum of outer products without the need of rank information,
which is referred to as adaptive rank-one matrix completion
(AROMC). The core of AROMC is to seek the hidden low-
dimensional vector subspace that captures most of the infor-
mation in the incomplete target matrix and then project the
matrix orthogonally into that subspace to obtain the optimal
weights of basis vectors so as to make the estimated matrix
best fit the observed entries. By “best”, we mean the smallest
in the mean square error sense. In each iteration, one basis
vector is added to increment the rank of estimated matrix,
while alternating minimization and least squares (LS) [47] are
adopted to compute the vectors and weights. Subsequently, we
recover the matrix via summing the outer products of basis
vectors and the corresponding weight vectors. An appealing
feature of AROMC is that it converges linearly, contrasting
to the OMP that has a sub-linear convergence rate for sparse

vector recovery [46]. The main contributions of our paper are
as follows:

1) We devise the AROMC algorithm via seeking a ba-
sis vector subspace that is perpendicular to the space
spanned by the columns of the residual matrix, which
is analogous to OMP. That means in the column vectors
of residual matrix, all information associated with the
basis vectors is orthogonally projected onto the basis
vector subspace, thus resulting in a better recovery
performance.

2) We theoretically prove that the convergence rate of
AROMC is linear. As a result, we only require
O (log(1/e€)) iterations to obtain an e-accuracy solution.

3) We theoretically show that the recovery error of
AROMC is smaller than that of ORIMP. It is worth
noting that the AROMC does not require refining the
weights of rank-one matrices at the end of each iteration.

The remainder of this paper is organized as follows. In

Section II, we introduce notations and related works. The
AROMC algorithm development, and its differences with the
relevant schemes in the literature, are presented in Section
III. In Section IV, the convergence of the proposed algorithm,
comparative recovery errors, and computational complexity,
are analyzed. Numerical simulation results based on synthetic
data and real images are discussed in Section V. Finally,
conclusions are drawn in Section VI.

II. PRELIMINARIES

In this section, notations are provided and related works are
reviewed.

A. Notations

Scalars, vectors and matrices are represented by italic,
bold lower-case and bold upper-case letters, respectively. The
ith element of a vector a is denoted by a;, and the (3, )
entry of a matrix A is denoted by A;;. In particular, 0 and
O are the vector and matrix with all entries being zeros,
respectively. The (-)f, (-)~" and (-)7 are the pseudo-inverse
operator, inverse operator and transpose operator, respectively.
Let Q C {1,---,m} x {1,--- ,n} represent the index set of
the observed entries of A, and (-)q is a projection operator,
defined as:

Aij7 if (Z,]) e

0, otherwise.

[Aﬂ]ij =

In addition, |4 = /327" >°7 A?; is the Frobenius norm of

A € R™*™ and vec(A) is a vector generated by vectorizing
A. The Frobenius inner product of A and B with the same
dimensions is (A, B) = trace(A” B), which is equal to the in-
ner product of (vec(A), vec(B)). Unless stated otherwise, the
matrix norm refers to the Frobenius norm, i.e., ||A| = ||A|| r,
and we define (A, B), = (Aq,Bq) and ||A||Z = (4,4),.
In particular, u; € R™ and v; € R” for ¢ = 1,2,--- |1,
are the column vectors of U and V, respectively, and U and
u represent the basis matrix and vector, whose values do not
change as the number of iterations increases. We denote o;(A)
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as the ith largest singular value of A and let A; .(resp. A. ;)
represent its jth row (resp. column). Finally, |A|, |al, |Z| stand
for the cardinality of the corresponding matrix, vector and set,
respectively.

B. Related Works

The task of matrix completion is to seek a low-rank matrix
M € R™" to approximate an incomplete matrix X o and
determine the missing entries. Mathematically, it is modeled
as a rank minimization problem:

min rank(M), st. Mg = X (1)

However, (1) is non-convex and NP-hard. In practice, the
nuclear norm is exploited, leading to

min [M]|., st Mg =Xq 2)

where the nuclear norm ||M ||, is the sum of singular values
of M. Although this is a convex optimization problem, it
involves performing SVD at each iteration. To circumvent
SVD, matrix factorization has been suggested, leading to the
following optimization problem:

min HUVT —XH2 st Mo = Xq 3)
U,V Q

where U € R™*" V € R™*", M = UVT and r is the rank
of X. Apparently, M also has rank r. However, this approach
needs to know the value of r, which is often an intractable task
in many real settings. In order to address this problem, another
low-rank matrix completion method is put forth and the basic
idea is analogous to SVD, that is, any matrix X € R"*" with
rank r can be written as a linear combination of r rank-one
matrices:

X = Z 0,Y, )
1=1

where Y, € R™*™ with ||Y;||r = 1, and 6; are the ith rank-
one basis matrix and its corresponding weight, respectively.
Based on (4), Wang et al. [40], [41] have developed the
following rank-one matrix completion approach:

- 2
X-) oy, )
=1

Q

min

0;
where 7 is the maximum allowable rank value. It starts with
modeling X using a rank-one matrix, then the rank increments
until a stopping criterion is reached. In their study, Y; = l;r7,
where I; and r; are the top left and right singular vectors of
the current residual matrix, respectively. The 6; is uniquely
determined by performing an orthogonal projection of X
onto the subspace spanned by Y';. Besides, in each iteration,
one rank-one basis matrix is added so that the rank of the
estimated matrix increases until algorithm termination. Hence,
the matrix rank can be automatically determined, which is
different from (3). However, all rank-one basis matrices in (5)
are computed once and there are no further adjustments for
them.

III. PROPOSED ALGORITHM

To obtain a more flexible rank-one basis matrix represen-
tation, we first express X as a sum of r outer products, that
is:

X:UVT:u1v1T+u2v2T+~-~+urvTT (6)

where U = [uj,u9, - ,u,], V = [v1,v9, -+ ,v,], and the
column vectors in U or V' are not required to be orthog-
onal. It is worth mentioning that (6) is different from the
SVD whose basis vectors are orthonormal. In this study, we
give a new interpretation of (6) in that the column vectors,
i.e., ui,us,- - ,u,, are considered as basis vectors to be
determined while v1,vs, - - - ,v,, are the corresponding weight
vectors. Before proceeding, we first point out that (5) cannot
update the previously computed rank-one basis matrices, via
rewriting (5) as
- 2
min X — Zl,wZT s s.t. w; = 917‘1 (7)
w;
=1 Q
where w; refers to the weight vector of [;. It is easily observed
that although 6; can take any value, w; is constrained by 7;.
In order to handle this problem, we aim to seek the basis
vector subspace spanned by u1,uo, - - - ,u,, instead of finding
the rank-one basis matrices as in [40], [41]. Our idea is to
modify (5) as
p—1 2
: oo T T
uzrjl{l&} X ;ulvi upv,, ) 8)

where p represents the pth outer iteration, Uy, U, -+ ,Up_1,
are the basis vectors that are kept fixed in the subsequent
iterations, while u,, and vy, v, - - - ,v, are the pth basis vector
and weight vectors, respectively, to be updated. Hence, there
are (p + 1) unknown vectors, i.e., up,v1,V2, - ,U,. As the
weight vectors are updated at each iteration, the previously
computed rank-one basis matrices can be continuously refined.
In fact, compared with the result at the (p — 1)th iteration
that attains a rank-(p — 1) matrix, the pth outer iteration
then produces a rank-p matrix, and the relationship between
them is that they have (p — 1) identical basis vectors, that is,
Uy, Us, - ,Up—1. Apparently, the rank of the obtained matrix
increases as the number of basis vectors increases.

To tackle (8), alternating minimization is adopted, whose
nature is to optimize one of the factors in (8) while fixing
the other in an alternate manner. To be more specific, in the
kth (k = 1,2,---) inner iteration, V¥ and u} are alternately
minimized via:

) _ 2
vk = arg min | X —U* 1VTHQ ©))
wp = argmin [|X — [T,1,m] (V) 010)
where U, 1 = [d1,82, - ,p1], U™ = [Up1,u57"].
We now focus on (9) for a fixed UF—1:
) 2
win £(V) = X -OVT} an

where the superscript (-)* is dropped for notational simplicity.
The problem (11) is equivalent to addressing the following n
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independent subproblems because f(V') can be decoupled with
respect to (w.rt) V. for j =1,2,--- ,n,
. o T2
win fVi) = || X.; =UV] ||, (12)
We first locate the row indices of the observed values in the
Jjth column of X, which are contained in Z;, and hence the
total index set Z for X is Z = {Z1,Z,,--- ,Z, }. Apparently,
Z?zl |Z;| = |€2|. Defining Uz, € RIZi1*P which contains the
|Z;| rows indexed by Z;:
UIjl,:
Uz

Jast

U —

J

13)

U

Ij\zj\v:

where Iji stands for the ith element of Z;, and the associated

T
vector (X.5)z, = |Xz,,0 Xz, 5| € BB (2)is
then rewritten as: '
. 2
min f(V;.) = [[(X.;)z, ~UrV| (14)
g
whose solution is simply the linear LS estimate:
-1
VT = (U%UIJ.) UL (X)), (15)
and the computational complexity is O(|Q[p?).
In a similar manner, (10) becomes:
. = 2
min fup) 1= [[(X=TUp1V,o1) —up'vzHQ
P
— T 2
—|x=Tpavy)" vl , e

2
= B, — v, |

where V,_1 = [v1,v2, -+ ,vp_1] and R;, = (X -
Up,le,l)T. Problem (16) is the special case of (11) with
single column and can be decomposed as the following m
subproblems:

min f ((up);) =

(“p)i

a7

H (R;) i Up (up); :2

which is equal to

2

min f ((up)z) = H ((R;)”i)ji = (vp) 7 (up), (18)

(up)i

where 7; is the set of row indices of the observed values in
the ith column of R; for i =1,2,--- ,m. The LS solution of
(18) is:

(), = 0)) 5, (®R)..) , /(7 5, @)

s

19)

and the corresponding computational complexity is O(|Q2]).
The steps of AROMC are summarized in Algorithm 1.
Note that there are two kinds of iterations, i.e. an inner
iteration and an outer iteration. The inner iteration is mainly
used to find the solutions to basis vectors and the asso-
ciated weight vectors via alternating minimization. Defin-

2
ing = (UkVE) = HX-U’; (V’;)THQ/HXHé and § =

Algorithm 1 Adaptive Rank-One Matrix Completion
(AROMC) using Sum of Outer Products

Input: Incomplete matrix X, index set {2, and tolerance
parameters I,,,, n and ¢
Initialize: U, = ()
forp=1,2,--- .1, do
/I ' In the pth outer iteration
Randomly initialize u,, and define U = [Up_1,u,).
for k=1,2,--- do
/I In the kth inner iteration, use alternating LS to
find p outer products
for j=1,2,--- ;ndo
/I Fix (U’;_l)zj, optimize V,

W}),. o weyin|| X, - @5, VE[

end for
for:=1,2,--- ,m do

/! Fix (Vk) 7 optimize uk

p

((B))..), — @h) 5, (),

)

p

(uﬁ)Z — arg (Hll%l

end for
Stop, if convergent.
end for
Set w, = uk, U, = [Up_1,%,), and calculate M =
uVh
Stop, if a termination condition is satisfied.
end for
Output: M.
€ (U’;7 V’;) —e (UkH, V’;“), if 4 is less than a threshold, we
say that u’; and V' satisfy the convergence condition and the

inner iteration will stop. In this paper, we set the threshold as
10~°. The outer iteration aims to increase the dimension of the
basis space, that is, increasing one basis vector at each outer
iteration. Its stopping conditions are based on the maximum
allowable number of outer iterations I,,, absolute residual
error (RE) with RE = ||R,_1||r — || Rp|| 7 or the relative gap
(RG) of the Frobenius norm of the two most recent adjacent
rank-one matrices, which is expressed as [48]:

rG = 11|y~ [lwevy | -
letp-1v5s

When the outer iteration number reaches I,,,, RE < 7 or RG <
¢, where I,,,, n and ( are user-defined tolerances, the algorithm
terminates. We use RG as the termination condition because
for the low-rank matrix as in images, which is contaminated by
Gaussian noise, the gap of singular value above the “elbow” is
bigger than that below the “elbow” [49], [50]. Compared with
the matrix constructed by the singular values above the elbow
and the associated singular vectors, the matrix that is generated
by the singular values below the elbow and associated singular
vectors are dominated by noise. Hence, the latter should not
be involved in the estimated matrix. Thereby, the proposed
algorithm attempts to find a sum of rank-one matrices with
less noise by stopping the iterative procedure before the elbow.
Since for the pth rank-one matrix, 'u,p'vZ;H 7 is approximately

(20)
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equal to the pth singular value, hence the gap of singular values
is calculated by RG in this study.

Remark 1. The proposed algorithm is different from (3),
although they both need to find V. We highlight the two
main points to illustrate their differences. The first one is
that when the matrix rank r is known, given V, all the r
column vectors in U need to be determined in (3), but for the
proposed algorithm, the first (r — 1) column vectors are fixed
and only the last column vector needs to be solved. The second
point is that when r is unknown, in contrast to (3) that is not
applicable, AROMC can complete X, because it gradually
increases the number of basis vectors until an appropriate rank
estimate is reached. This point is extremely important because
it is often difficult to determine the ranks of real-world data.

Remark 2. AROMC is also different from OR1MP, EOR1MP
and LIMC-RE, although they are all based on the idea of rank-
one matrices for matrix completion. The difference between
AROMC and ORIMP or EORIMP is that firstly, the bases
they find are different. The ORIMP and EORIMP compute
rank-one basis matrices, while AROMC aims to seek basis
vectors, and those basis vectors are used to update rank-one
basis matrices. However, the previously computed basis matri-
ces in ORIMP and EORIMP remain unchanged, so AROMC
has a more flexible basis subspace. Secondly, ORIMP and
EORIMP also need to refine the weights of different rank-
one basis matrices after completing the current iteration, but
AROMC only involves weight vectors and they are solved
during the iterative procedure. LIMC-RF adopts the ¢;-norm
and truncated SVD to estimate the rank and achieve matrix
completion, respectively. Nevertheless, AROMC can obtain an
appropriate rank by gradually increasing its basis vectors and
applies alternating minimization to find solutions.

IV. THEORETICAL ANALYSIS

In this section, we first show that the basis vectors in our
outer product representation are independent of each other and
AROMC achieves a linear convergence rate. Besides, we give
a proof about the relationship of the recovery error among
AROMC, ORIMP, and PAM in theory. Finally, the computa-
tional complexity of the proposed algorithm is examined.

A. Basic Properties

In this subsection, we show that the basis vectors in
AROMC are independent and also perpendicular to the space
spanned by the column vectors of the residual matrix. In
addition, Algorithm 1 achieves a linear convergence rate. The
results are shown in the following propositions and theorems,
and their corresponding proofs are provided in the Appendix.

Proposition 1. All basis vectors w; in U = [6y,Ua, -+ ,Up)
are independent.

We then prove that the basis vector subspace is perpen-
dicular to the space constructed by the column vectors of
the residual matrix, i.e., the column vector space of ﬁp is
perpendicular to that of Ry, .

Proposition 2. ﬁ;{RPH =0, forp=1,2,---.

We next give a proof on the linear convergence rate of
the proposed algorithm. Prior to presenting the proof, it is
necessary to introduce two important lemmas.

Let X € R™*™ be a matrix with rank r and it is well known
that X can be decomposed as

T
X =) oiapl 21)
i=1
where 07 >09>--->0,>0 are the singular values,
ap,- - ,a- € R™and By, -, B, € R™ are the corresponding
left singular and right singular vectors, respectively. Equation

(21) gives us an approach to construct the best low-rank
approximation for X by the following lemma.

Lemma 1. (Eckart-Young-Mirsky Theorem) [51]-[54] Sup-
pose X has the SVD as in (21). If k < r, then the matrix
M = Zle o, BT satisfies

IX — M5 < |IX -Y|% (22)

where Y is the set of R™*"™ matrices with rank at most k over
R. Lemma 1 means that M is the unique optimal solution of
the following optimization problem

min ||M — X%, s.t. rank(M) =k (23)

Another lemma is the latest theorem for global optimality
in low-rank optimization [55]-[62]. Recently, Zhu et al. [30],
[31] developed a new theory on the global optimality conver-
gence in low-rank matrix factorization in order to tackle the
problem (3). They recast (3) as a general matrix factorization
problem:

. T T
in fOvy)st. M =U0V (24)
where U € R™*", V € R"™" and f(-) is a cost function
that evaluates how well a candidate solution approximates
the observations. Apparently, f(-) is the Frobenius norm
in our study. Problem (24) is non-convex because of the
factorization UV, even when f(-) is convex. It may have
spurious local minima or “bad” saddle points at first sight.
However, according to [30], [31], if the cost function satisfies
some mild conditions, the global minimum of (24) is obtained.
Now, we summarize their main results in Lemma 2.

Lemma 2. (Global optimality theorem) [30], [31] If the
Sfunction f(M) satisfies the following two assumptions, the
globally optimal solution of (24) is obtained.

Assumption 1: f(M) has a critical point at M* € R™*"
which has rank r.

Assumption 2: f(M) is (2r,4r)-restricted strongly convex
and smooth, i.e., for any m x n matrices M and G with
rank(M) < 2r and rank(G) < 4r, the Hessian of f(M)
satisfies the following equation for some positive a and b:

a||Gl5 < [V2f(M)] (G,G) < b||G| % (25)

In addition, this theorem is not only applicable for the exact-
parameterization case where rank(M™) = r, but also suitable
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for the under-parameterization case where rank(M*) < r
and the over-parameterization case where rank(M*) > r.
Assumption 2 makes sure that the function f(M) has no
spurious local minima and obeys the strict saddle property,
so the critical point of Assumption 1 is the globally optimal
solution.

It is worth noting that given a low-rank matrix X with rank
r, Lemmas 1 and 2 show two different schemes to find the
optimal approximation of X. Their main difference is that the
vectors a; (or B;) in Lemma 1 are orthogonal, while those
vectors in Lemma 2 are just independent. We may say that
ORI1IMP takes the idea of Lemma 1, while AROMC and PAM
are based on Lemma 2. Since M in Lemma 2 is fully observed,
it is necessary to verify that when the entries in M are partially
observed, Lemma 2 holds.

Proposition 3. For an p-incoherent and incomplete matrix,
Lemma 2 holds with a = (1 — d4,)p and b = (1 + 04,)p, if
Q is drawn according to Bernoulli sampling with probability
p > 16Cur?logn/§3,m.

Now, we show that the proposed algorithm converges lin-
early.

Theorem 1. The AROMC algorithm achieves a linear conver-
gence rate, which satisfies

IRl < 87~ IX Il

where 0 < <1, and p > 1.

B. Comparison of Recovery Error

In this section, we show the relationship in the recovery
error among AROMC, ORIMP and PAM. Since these are
different types of algorithms, it is reasonable to compare the
recovery error according to the rank information. When the
matrix rank is unknown, the recovery error relationship be-
tween OR1IMP and AROMC is shown in Theorem 2. When the
matrix rank is given, the relationship of these three algorithms
is described in Theorem 3. In order to present the process
of the proof clearly, we denote {u,,v,} and {u,,0,} as the
optimal solutions of AROMC and ORIMP in the pth iteration,
respectively. Besides, R}, R}, and R} represent the residual
matrices of AROMC, ORIMP and PAM in the (p — 1)th
iteration, respectively.

Proposition 4.

2

p—1

a7 T T

X - E uv; —upv,
i=1

min
u’P'r{"”}
- , (20
= i X - w0;,(v)" —u,0,w)"
oy foin ;u i(v;)" —upby(vy)

Theorem 2. When the matrix rank is unknown, the relation-
ship between ORIMP and AROMC in terms of recovery error
is

A e A @7

Given the rank information of matrix, we will theoretically
show that the recovery error of PAM is the infimum of that
of AROMC and ORIMP in the following.

Theorem 3. Given that the matrix rank r is known, the
relationship among AROMC , ORIMP and PAM in terms of
recovery error is

IR™|? < R |I° < ||| (28)

Remark 3. When the rank of the estimated matrix obtained
by different algorithms is the true rank of the matrix, we
analyze that the recovery error among the three different
algorithms satisfies (28). Although the PAM can attain the
smallest recovery error, it requires knowing the matrix rank
which is often difficult to estimate accurately. Therefore,
the proposed algorithm is advantageous over many existing
algorithms, because it does not need to know the matrix rank
in advance, and the recovery error is not larger than that of
ORIMP in theory.

C. Computational Complexity

The AROMC computational complexity in the current iter-
ation depends on the pth outer iteration and |Q2|. For (14), we
assume that there are /; observed entries in the jth column
of X, and hence the computational complexity of the LS
solution is O(Q11;p?), where Q1 is the number of iterations
in the alternating minimization. Generally, (); with a value of
several tens can satisfy the convergence condition [43]. Hence
the computational complexity of the proposed algorithm in
the current iteration is O(Q:|Q[p?), where |Q = 37,
Assuming that the matrix rank is r, the total complexity
of the AROMC is O(Q1|2|r3). Without loss of generality,
suppose m > n, the computational complexity of full SVD is
O(mn? + n?). Therefore, for an incomplete low-rank matrix
with rank r < n, the computational complexity of the
proposed algorithm is smaller than that of the others requiring
full SVD calculation.

L.

V. EXPERIMENTAL RESEULTS

In this section, we compare our proposed algorithm with
the four types of matrix completion schemes in the literature.
The first type of competing algorithms based on nuclear
norm includes SVT [22], FPCA [23], and APGL [24]. The
second one is based on projection onto nonconvex constraint
sets, including SVP [25], NIHT [26], and AP [27]. Then,
the third one performs matrix factorization directly to sat-
isfy the low-rank property, and examples are LMaFit [32],
OptSpace [34], and PAM [36]. The last category of compet-
ing algorithm makes use of rank-one matrix completion and no
matrix rank knowledge is required, including LIMC-RF [38],
ORIMP [40] and EORIMP [41]. We perform comparisons
using synthetic data as well as real images, and all simulations
are run on a computer with 3.2 GHz CPU and 16 GB memory.

In our experiments, the recommended setting of parameters
for the competing algorithms is adopted. If suggested parame-
ters are not available, the parameters are selected as the values
which possess the best performance among numerous trials.
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In our proposed algorithm, we set I,, = 100, n = 10~% and
¢ = 0.5 if the data contain noise; otherwise, ¢ = 0.001.

A. Results of Synthetic Random Data

The experimental setting strategy in [40], [41] is adopted,
where the authors construct a synthetic matrix by first gen-
erating a random matrix whose entries satisfy the standard
normal distribution, and then setting its ¢th singular value to
¢t fori=1,2,---r, where ¢ = 2. In our experiments, the
dimensions of X € R™*™ are m = 500 and n = 300, and its
rank r is 10. Besides, the root mean square error (RMSE) is
employed as the performance measure, which is expressed as:

_ 2
RMSE = \/E{”X M”F}
mn

and it is calculated based on 100 independent runs.

Fig. 1 plots the relationship between RMSE and percentage
of observations without noise. It is seen that the PAM can
obtain the optimal solution if the percentage of observations
is larger than 20%, and the recovery error of the proposed
algorithm is better than that of ORIMP, which aligns with
(28). The results of the remaining algorithms have a poor
performance compared with the PAM and proposed algorithm.
While the SVP algorithm diverges when the percentage of
observations is less than 40%.

(29)

RMSE

—#— AROMC
—o—SsVT
—8—AP
OR1MP
—=%—EORIMP
SVP
—<—LIMC-RF
—%— LMaFit
—O6—PAM

10'10

1078 ; ;
10 20 30 40 50 60 70 80 90
Percentage of observations (%)

Fig. 1: RMSE versus percentage of observations in noise-free case

We then consider the noisy scenario where N € R™*"
which contains zero-mean white Gaussian variables is added to
the low-rank X, and the signal-to-noise ratio (SNR) is defined
as:

1 X%
INE

Fig. 2 plots the RMSE versus SNR for different algorithms
when the percentage of observations is fixed at 50%. It is
seen that AROMC has the minimum RMSE for all SNRs,
compared with the other rank-one matrix completion schemes,
namely, ORIMP, EORIMP and L1MC-RF, and the remaining
algorithms. Surprisingly, the AROMC can even yield a smaller
RMSE than the PAM. Prior to explaining the superiority of
AROMC over PAM in recovery errot, it is necessary to know
the fact that in the absence of noise and the rank of X is

SNR = (30)

known, the PAM attains the global minimum recovery error in
terms of RMSE. However, when X is contaminated by noise,
PAM is only the optimal rank-r approximation of X in the LS
sense, which may be not the globally optimal approximation of
X . That is to say, it is possible that another rank-ry matrix with
ro < 1 is the best approximation in the presence of noise. This
is because the AROMC will not take the signal components
with stronger noise, and terminates before reaching the true
matrix rank. Therefore, when the matrix is too noisy, the
proposed method outperforms the PAM. Nevertheless, the gap
of the RMSE between them decreases as the SNR increases.

RMSE

SNR (dB)
Fig. 2: RMSE versus SNR

Fig. 3 plots RMSE versus percentage of observations at
SNR = 10 dB. Firstly, AROMC is significantly superior to
all other algorithms for different percentages of observations.
Except LIMC-RF, the RMSE of all algorithms decreases with
the increase of the observation percentage. For LIMC-REF, it
just updates the missing entries in each iteration and keeps
the observed entries unchanged, so in the noisy case, the
RMSE may increase although the percentage of observations
increases. Furthermore, the PAM and LMaFit cannot converge
if the percentage of observations is less than 10%.

TABLE I: Estimated rank by different algorithms

Real rank 6 8 10 12 14 16
AROMC 6 8 10 12 14 16
SVT [22] 4 6 8 10 12 118
ORIMP [40] 50 50 50 50 50 50
EORIMP [41] 50 50 50 50 50 50
SVP [25] 12 16 20 24 28 32
LIMC-RF [38] 5 7 8 9 14 38

Table I tabulates the rank estimation results without noise.
Note that the AP, LMaFit and PAM are not involved because
they cannot estimate the matrix rank. It is seen that AROMC
can find the rank accurately and the reason why the results
of ORIMP and EORIMP are both 50, is that their maximum
outer iteration values are set to 50. In addition, the relationship
between the matrix dimensions and RMSE as well as runtime
are investigated. We set m = n, and r = m/50 [64].
Table II tabulates the results in the presence of white Gaussian
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TABLE II: Average RMSE and runtime comparison.

Size 300 400 500 600
RMSE Runtime RMSE Runtime RMSE Runtime RMSE Runtime

AROMC 0.012 3.28 0.031 4.61 0.091 5.63 0.28 6.77
SVT [22] 0.013 11.30 0.094 22.23 0.31 41.61 0.85 75.90
AP [27] 0.0055 5.75 0.049 11.97 0.51 17.01 0.89 26.69
ORIMP [40] 0.016 2.25 0.042 8.83 0.12 11.26 0.37 16.12
EORIMP [41] 0.016 1.65 0.041 8.41 0.12 10.44 0.36 14.55
SVP [25] 0.021 45.28 0.065 64.32 0.21 89.48 0.70 117.8
LIMC-RF [38] 0.034 1.51 0.080 14.47 0.26 29.50 0.84 49.58
LMaFit [32] 0.030 0.45 0.082 0.86 0.25 1.21 0.79 2.30
PAM [36] 0.013 0.81 0.040 1.27 0.13 2.11 0.44 3.25

noise at SNR = 10 dB. It is seen that the AROMC achieves
better recovery performance, but it requires longer runtime
than those of LMaFit and PAM. However, LMaFit and PAM
need to know the rank. Fig. 4 compares the convergence of
AROMC, OR1IMP and EOR1IMP. In order to obtain a smooth
convergence curve, we modify two parameter settings, namely,
r = 30 and ¢ = 1.2. Both ORIMP and EORIMP have been
verified to have a linear convergence rate in [40], [41], and
the proposed algorithm also converges linearly. It is shown
that AROMC has a smaller RMSE than both ORIMP and
EORIMP. Moreover, the impact of the tolerance parameter ¢
on the proposed algorithm is investigated in Appendix H.

0.9 T E
—%—AROMGC | ]
—6—sVT
0.7 | e AP E
OR1MP
—#— EORIMP
SvpP E
—%— LIMC-RF
—%— LMaFit
—o— PAM

021

20 30 40 50 60

Percentage of observations (%)

70

Fig. 3: RMSE versus percentage of observations at SNR = 10 dB

B. Image Recovery

The proposed algorithm is applied on image inpainting
where images in [65] and the ZJU dataset [49] are tested.
In the experiments, the images are first converted into gray-
scale to obtain the direct matrix forms, and we consider
three different masks, namely, random mask, text mask and
block mask, to generate the corrupted images. To measure the
performance of the recovered images, peak signal-to-noise-
ratio (PSNR) is adopted and we directly use the command
‘psnr ( recoverd, original )’ in MATLAB for its calculation.
Given an incomplete image, we take a similar strategy in [49]

10°

AOR1MP
OR1MP
EOR1MP

RMSE
< |

. . . . .
15 20 25
Iteration number

30

Fig. 4: Comparison of convergence between AROMC, ORIMP and EORIMP

to determine the image rank, i.e., we try all values of rank and
choose the one that yields the largest PSNR as the true rank.

1) Random Mask: Firstly, we address a relatively easy
matrix completion problem where the missing data are ran-
domly distributed. During the experiments, we first cover 50%
pixels of the image, and do not add any noise. Then, the
recovery performance of different algorithms is compared in
terms of PSNR and the results are shown in Fig. 5. It is
observed that the AROMC achieves much higher PSNR values
compared with the other algorithms. In addition, we conduct
experiments when the image is contaminated by zero-mean
white Gaussian noise. Fig. 6 plots PSNR versus SNR for
different algorithms with 50% of observations. It is seen that
the proposed algorithm has the best performance for all SNRs,
and ORIMP as well as EORIMP obtain a better performance
compared with other methods. Furthermore, we study the
relationship between recovery performance and observation
ratio, and the results are shown in Fig. 7, which plots the
PSNR versus percentage of observations at SNR = 10 dB.
Again, AROMC attains the best recovery performance among
all competing schemes. Finally, the images from the ZJU
dataset shown in Fig. 8, are tested, and the results are tabulated
in Table III. We easily observe that the proposed algorithm
attains the best recovery performance at SNR = 10 dB.
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Fig. 5: Image recovery results with random mask by different algorithms

25 AROMC ~ swwos ORIMP  temser LIMC-RF
svT s EORIMP  wewses LMaFit -
wsts AP s SVP NSNS PAM :;
z N
N Vi g
20 N § N E\
B N N N ?E
N NAE
- N: \ JNEOR. N \/NEESON
¥ N N A A l;g
= N N NG N ﬁg A E§\
Wy oale Ll
2 g g N N
& N . Mh AN Al v
o |4 r B B B
& N N \ N
\g INEENIN N N N 3
. B B B
\& 2 N ] N INBISEN N4
N3 % NN N2 N NG
5 AN ’g NI A N N
P 8 B
% 3 i \ \
N ¢§ Y l; 7 N N N
N 2 7 4 7 N N N
N NN NI
oL L e e
0 3 6 9 12 15
SNR (dB)
Fig. 6: PSNR versus SNR for random mask
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Fig. 7: PSNR versus percentage of observations at SNR = 10 dB

2) Text Mask: Text mask is another type of matrix com-
pletion problem which is not easy to tackle since the cor-
responding missing entries are not randomly distributed and
some important texture information of images may be covered

Image-3

T e
e
T TE

i

Image-8

Image-7

Fig. 8: Images from ZJU dataset

by text. As shown in Fig. 9, the image is covered by “Matrix”,
“completion” and “2021”. We first conduct matrix completion
experiments without noise, and the results are shown in Fig. 9,
while Fig. 11 plots the PSNR versus SNR for different
algorithms. It is seen that the proposed algorithm has superior
recovery performance over other matrix completion methods.
Besides, the same mask is utilized to cover the images in
Fig. 8 and the restoration results by different methods are also
included in Table III. It is seen that our algorithm outperforms
the competing methods.

3) Block Mask: In some situations, images are contami-
nated by some large missing blocks. In our experiments, the
image is covered by blocks of different shapes, making the
recovery of missing entries challenging. As shown in Fig. 10,
the image is contaminated by 12 different shapes of blocks,
together with the image recovery results. It is observed that
AROMC achieves the best image completion results than
other matrix completion algorithms. In addition, we conduct
experiments for the noisy case, and the results are shown in
Fig. 12. We again see the superiority of our proposed AROMC.
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Fig. 9: Image recovery results with text mask by different algorithms
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Fig. 10: Image recovery results with block mask by different algorithms
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Fig. 11: PSNR versus SNR for text mask
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TABLE III: Image inpainting performance comparison using ZJU dataset.

AROMC SVT [22] AP [27] ORIMP [40] EORIMP [41] SVP [25] LIMC-RF [38] LMaFit[32] PAM [36]

Image-1 21.44 17.91 14.23 20.54 20.49 16.61 15.95 13.81 16.99

Image-2 20.00 18.49 17.48 19.77 19.76 18.07 18.63 16.41 18.35

Image-3 20.84 19.16 15.28 20.31 20.30 16.32 17.33 14.60 17.23

Random  Image-4 21.81 19.83 16.99 21.37 21.39 18.17 18.61 16.33 18.85
Mask Image-5 28.55 20.26 15.54 26.37 26.17 17.99 17.79 15.38 19.00
Image-6 19.50 18.42 15.01 19.07 19.03 15.79 17.19 14.41 16.49

Image-7 26.28 20.41 19.81 25.53 25.53 21.99 22.88 19.01 22.80

Image-8 22.24 20.09 17.18 21.68 21.64 19.91 19.07 16.75 20.13

Image-1 22.35 13.70 10.83 19.94 19.85 18.96 13.88 16.30 19.41

Image-2 20.56 18.91 16.54 20.25 20.22 19.05 18.44 17.38 20.14

Image-3 21.44 16.10 13.46 20.16 20.10 20.15 16.16 18.51 20.23

Text Image-4 22.28 17.79 15.94 21.57 21.55 20.29 18.98 18.17 20.84
Mask Image-5 30.25 15.26 11.92 23.10 22.83 18.93 15.27 16.23 20.80
Image-6 20.86 16.28 13.97 19.75 19.70 20.24 16.54 17.93 20.44

Image-7 25.81 20.01 16.35 21.50 21.61 19.76 19.46 18.51 22.78

Image-8 22.38 16.88 14.15 19.92 20.00 20.60 17.16 17.68 21.06

Image-1 22.55 13.38 13.17 21.71 21.76 19.70 17.56 17.50 19.96

Image-2 20.17 18.98 15.55 21.09 21.08 16.04 20.05 16.09 20.37

Image-3 21.74 15.89 1543 21.38 21.41 20.00 19.05 18.33 20.26

Block Image-4 22.48 17.53 16.95 21.68 21.67 21.32 20.24 19.68 21.40
Mask Image-5 30.72 14.93 14.58 27.69 27.67 20.22 19.55 17.83 21.29
Image-6 21.08 16.10 15.33 20.74 20.73 19.05 18.92 16.94 20.10

Image-7 27.03 20.06 16.26 25.95 25.96 24.76 20.97 22.84 25.27

Image-8 23.20 16.61 12.35 22.26 22.32 22.43 18.49 20.56 22.48

Table III tabulates the results tested on the ZJU dataset and it is REFERENCES

seen that our method has the best restoration results, compared
with the remaining methods.

VI. CONCLUSION

We have developed a novel low-rank matrix completion
algorithm, referred to as adaptive rank-one matrix completion
(AROMC). By utilizing the sum of outer product matrix
representation, it aims to alternately find a low-dimensional
vector subspace and learn the weights of those basis vectors
by performing an orthogonal projection of the observed matrix
onto the subspace. Compared with employing fixed rank-one
basis matrices in OR1MP, the rank-one basis matrices, con-
structed by the basis vectors and their corresponding weight
vectors, are adjustable. Another advantage of the AROMC is
that it only needs termination conditions without knowing the
rank information, which is very easy to perform. We also prove
that the proposed algorithm has a linear convergence rate, and
a lower recovery error than the ORIMP. Based on extensive
numerical examples using synthetic data and real images, the
superiority of the AROMC over other competing algorithms
in terms of RMSE, and/or PSNR, is demonstrated.
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