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An ℓ0-norm Optimization-based Algorithm for
Robust and Efficient MIMO Localization

Abstract—Most of the existing localization frameworks are
established under the Gaussian noise assumption and thus provide
unsatisfactory accuracy in the presence of outliers. This work con-
siders the robust and efficient target localization with multiple-input
multiple-output radar by adopting the idea of outlier separation and
the ℓ0-norm. Specifically, we model the outliers with an auxiliary
variable and impose sparsity constraint on it. The localization task
is then formulated in the form of ℓ0-norm constrained optimization.
In doing so, we integrate outlier detection and target localization
into a single problem. An alternating optimization (AO) based
solver is developed for the resultant optimization problem. In detail,
the AO-based algorithm consists of two steps, which updates the
target location and the auxiliary variable alternately. In particular,
both subtasks have closed-form solutions with low computational
complexity. Numerical results on both synthetic and real data verify
the efficiency and accuracy of the proposed algorithm in comparison
with four competing methods.

Index Terms— Multiple-input multiple-output (MIMO) radar,
target localization, ℓ0-norm optimization, non-line-of-sight, outlier

I. Introduction

Among various localization systems, the multiple-
input multiple-output (MIMO) radar has demonstrated
its superiority over traditional radar systems [1]–[6]. For
localization task, one essential aspect that should be taken
into account is the localization accuracy in noisy envi-
ronment. That is, the localization algorithms should be
capable of resisting noise. To this end, most of the existing
methodologies assume that the noise obeys zero-mean
Gaussian distribution [1]–[3]. Under this assumption, the
least squares (LS) provides the optimal estimation of the
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target location in the sense of maximizing the likelihood
function [7]. The resultant positioning problem can be
solved by adopting advanced iterative optimization algo-
rithms [1]–[3], [7], [8].

However, the complex practical situations may incur
noise of various types or their mixture, such as impulsive
noise and Gaussian mixture noise [9]–[12]. In MIMO
localization, electromagnetic signal transmission can be
compromised by signal-blocking obstacles and reflect-
ing surfaces, especially in complex buildings or dense
urban areas, which introduces non-line-of-sight (NLOS)
errors [9]–[12]. Consequently, the bistatic range (BR)
measurements, i.e. total propagation distances, associated
to the transmitters and receivers in the system may include
outliers. Hence, mitigating the influence of outliers and
improving localization accuracy are of great interest [13]–
[17].

To achieve robustness against outliers, several ro-
bust estimation frameworks have been established by
redesigning the optimization criterion [8]–[10], [14]–[17],
aiming to reduce the impact of NLOS-induced errors.
For instance, it is widely reported that the ℓq-norm
(0 ≤ q < 2) with smaller q is more outlier-resistant [18].
Inspired by this, the ℓq-norm based robust localization
models are studied in [8], [17], where q = 1 presents
the least absolute deviation-based formulation as in [9],
[14]. In addition, the average error due to outliers can
be reduced by introducing a balancing parameter [15],
[16]. The resultant nonconvex and nonlinear optimization
problems can then be tackled by Lagrange programming
neural network [9], [17], semidefinite programming (SD-
P) [10], majorization-minimization (MM) [8], [15], and
so on [14], [16].

Apart from suppressing the influence of outliers, it
would be advantageous to identify those BR’s with NLOS
errors [11], [19], [20]. Subsequently, the localization mod-
els can be constructed using only the BR’s that are free
from NLOS. In other words, NLOS identification-based
localization generally consists of two stages, namely, data
selection and localization. Nevertheless, identifying BR’s
with NLOS errors is challenging, and any missed detec-
tion or false alarm can result in a substantial accuracy loss.
Additionally, such a two-stage procedure may need to be
performed repeatedly in a brute force manner. Recently,
there are a few works exploiting the sparsity of the
outliers [21]–[23]. For localization, a sparsity-promoting
regularized SDP is presented in [21]. However, this model
places high demands on computational resources and
requires the prior knowledge of the NLOS errors.

To conclude, though the aforementioned robust frame-
works are insensitive to outliers and have achieved good
localization performance, their drawbacks include com-
putational inefficiency, reliance on the prior information
of NLOS, or suppressing rather than eliminating the
influence of outliers. Concerning the above, this work
proposes utilizing the ℓ0-norm optimization to achieve
robust and efficient localization. In detail, we incorporate
the concept of outlier separation to integrate outlier detec-

tion with localization in the form of ℓ0-norm constrained
optimization. Then, we resort to the alternating optimiza-
tion (AO) [24], [25] and MM [15], [26] for developing
efficient solver. Our main contributions are summarized
as follows:

(i) Instead of suppressing the influence of outliers, we
propose a robust localization model based on the ℓ0-
norm optimization, aiming at a one-shot framework
for outlier detection and localization. Specifically, we
adopt the outlier separation idea to directly model
the NLOS errors in the BR measurements through
introducing an auxiliary variable.

(ii) For the resultant model, an AO-based approach is
developed accordingly. Specifically, AO alternately
optimizes two subproblems for seeking the target
location and auxiliary variable. In the subtask for
target location estimation, we design a surrogate
function using the MM algorithm. In doing so, both
the subproblems have closed-form solutions.

(iii) Numerical results demonstrate that the proposed
method outperforms four state-of-the-art (SOTA)
competing algorithms in terms of both localization
accuracy and computational efficiency.

The remainder of this work is arranged as follows.
Section II introduces the traditional MIMO localization
and several SOTA robust estimation formulations. The
proposed formulation for robust MIMO target localization
and the corresponding optimization algorithm are given in
Section III. Section IV presents the experimental results.
Finally, conclusions are drawn in Section V.

Notation: We use lower-case or upper-case letters to
represent a scalars, while vectors and matrices are denoted
by bold lower-case and upper-case letters, respectively.
The transpose operator is signified by (·)T. Other mathe-
matical symbols are defined upon their first appearance.

II. MIMO Radar Localization

A distributed MIMO radar localization system [1], [2],
[6] normally includes m transmitters and n receivers in 2-
or 3-D space. Assume the positions of the transmitters and
receivers are known. The aim of this system is to locate
the unknown target position by utilizing the time-sum
of arrival (TSOA) measurements that are the propagation
distances of the signals transmitted from transmitters to
receivers with reflecting by the target.

Let the positions of these transmitters, receivers, and
the target in 2-D space be ttti = [xt

i, y
t
i ]
T (i = 1, · · · ,m),

rrrj = [xr
j , y

r
j ]

T (j = 1, · · · , n), and eee = [x, y]T, re-
spectively. In noise-free scenario, the TSOA-based BR
measurement, aka. the propagation distance, associated
with ttti and rrrj is given as:

ŝi,j = ∥eee−ttti∥2 + ∥eee−rrrj∥2, i = 1,· · ·,m, j = 1,· · ·, n, (1)

where ∥ · ∥2 denotes the ℓ2-norm. Apparently, there are
m×n distances in this system. However, noise exists un-
avoidably in practical situations. As a result, propagation
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distances are contaminated and the noisy distances are
expressed as

si,j = ŝi,j + ϵi,j , i = 1,· · ·,m, j = 1,· · ·, n, (2)

where ϵi,j represents the noise.
Conventionally, most of the existing localization

frameworks assume a zero-mean Gaussian distribution of
the noise [1], [2], [6]. In such a case, optimal localization
can be achieved via maximum likelihood estimation.
Then, the localization problem is of the well-known least
squares (LS) form, given by

min
eee

∑m
i=1

∑n
j=1 (si,j − ∥eee− ttti∥2 − ∥eee− rrrj∥2)2 . (3)

In practice, the MIMO system can be corrupted by
impulsive noise even outliers in practical environments.
In other words, si,j can be polluted by Gaussian and
impulsive noise simultaneously. It is widely reported that
LS technique is unable to resist the impulsive noise
effectively, resulting in unsatisfactory estimate [14], [17],
[18]. The reason is that the errors caused by outliers
are magnified by the ℓ2-norm and thus dominate the
optimization. To achieve robustness against outliers, the
ℓq-norm is adopted

min
eee

∑m
i=1

∑n
j=1 |si,j − ∥eee− ttti∥2 − ∥eee− rrrj∥2|q , (4)

where 0 ≤ q < 2 [8], [14], [17], [23], while q = 1 gives
the least absolute deviation based formulation [14], [23].
It is worth mentioning that ℓq-norm with lower order is
more outlier-resistant [18], [23]. However, ℓq-norm (0 <
q < 1) is nonconvex and nonsmooth, which makes the
localization problem more challenging. On the other hand,
those works exploring a balancing parameter [15], [16]
are dedicated to dealing with the following problem:

min
eee,θ

∑m
i=1

∑n
j=1 (si,j − ∥eee− ttti∥2 − ∥eee− rrrj∥2 − θ)

2
,(5)

where the objective function remains in the LS-based
form. It should be noted that balancing parameter based
approaches approximate bias errors in multiple trans-
mission paths with only one estimation variable. Hence,
these approaches are well-suited for scenarios, where
bias errors generally exhibit even magnitudes across var-
ious transmitter-target-receiver paths. However, outlier-
inducing bias errors occur at distinct scales in different
paths in general, making balancing parameter-based al-
gorithms less preferred.

III. Algorithm Development

In this section, we propose an ℓ0-norm-based robust
MIMO localization algorithm with the idea of outlier
separation. We consider that impulsive noise consists of
low-power dense Gaussian noise and high-power sparse
impulses. To model the sparse component directly, we
introduce an auxiliary variable ooo and then impose sparsity
constraint on it. In doing so, the outlier separation-based

model is:

min
eee,ooo

m∑
i=1

n∑
j=1

(si,j−∥eee− ttti∥2−∥eee−rrrj∥2−oi,j)
2 (6a)

s.t. ∥ooo∥0 ≤ κ, (6b)

where ∥ · ∥0 is the ℓ0-norm that counts the number of
nonzero elements in a vector, and κ > 0 controls the
sparsity of ooo. We term (6) as ℓ0-norm based Outlier
Separation (ℓ0-OS).

Due to the highly nonconvex and nonlinear nature
of positioning problem, obtaining its optimal solution
is challenging [6], [7]. Besides, ∥eee − ttti∥2 or ∥eee − rrrj∥2
can be approximately zero, when the target is near one
of the transmitters or receivers [9]. Hence, the gradient-
based optimizers may suffer from numerical instability or
even fail to locate the target position. In order to address
these difficulties, we exploit AO [24], [25] to develop
an algorithm for (6). In detail, the AO-based method
estimates eee and ooo alternately until convergence, which is
listed as follows:

eeek+1 = argmin
eee

f(eee,oook), (7a)

oook+1 = arg min
∥ooo∥0≤κ

f(eeek+1, ooo), (7b)

where

f(eee,ooo) =

m∑
i=1

n∑
j=1

(si,j − ∥eee− ttti∥2 − ∥eee− rrrj∥2 − oi,j)
2
.

In practice, AO stops when the relative error of decision
variables between two successive iterations is below a
certain threshold or the maximum iteration number is
reached.

It should be noted that (7a) is reduced to the LS prob-
lem with fixing ooo. However, the difficulty to optimize (7a)
roots from the ℓ2-norm-based terms and the cross terms
involving variable eee, namely, ∥eee − ttti∥2, ∥eee − rrrj∥2, and
2∥eee − ttti∥2∥eee − rrrj∥2 [9], [15]. To address this issue, we
use MM [26], [27] to devise a surrogate function for the
objective function in (7a), aiming at deriving a closed-
form solution of the variable eee. Hereby, we introduce two
lemmas to construct the desired surrogate function.

Lemma 1 [27]: Given f1(xxx)=−∥xxx − ccc0∥2, where ccc0
is a constant vector. Then, f1(xxx) is majorized by f̃1(xxx|x̃xx)
for any x̃xx, i.e., f1(xxx) ≤ f̃1(xxx|x̃xx), where f̃1(xxx|x̃xx) is a linear
function of xxx, given by

f̃1(xxx|x̃xx) = − (xxx− ccc0)
T(x̃xx− ccc0)

∥x̃xx− ccc0∥2
. (8)

Lemma 2 [27]: Given f2(xxx) = 2∥xxx − ccc1∥2∥xxx − ccc2∥2,
where ccc1 and ccc2 are two constant vectors. Then, f2(xxx)
is majorized by f̃2(xxx|x̃xx) for any x̃xx, i.e., f2(xxx) ≤ f̃2(xxx|x̃xx),
where f̃2(xxx|x̃xx) is a function of xxx listed as follows:

f̃2(xxx|x̃xx) =
∥x̃xx− ccc2∥2
∥x̃xx− ccc1∥2

∥xxx− ccc1∥22 +
∥x̃xx− ccc1∥2
∥x̃xx− ccc2∥2

∥xxx− ccc2∥22. (9)

In the following, we present the update schemes for
eeek+1 and oook+1, respectively.
(1) update of eeek+1
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When ooo is fixed at the k-th iteration, the objective
function of (7a) is rewritten as

f(eee,oook)

=

m∑
i=1

n∑
j=1

[
(γk

i,j)
2 − 2γi,j(∥eee− ttti∥2 + ∥eee− rrrj∥2)

+∥eee−ttti∥22 + ∥eee−rrrj∥22 + 2∥eee−ttti∥2∥eee−rrrj∥2
]
, (10)

where γk
i,j = si,j − oki,j . Apparently, (10) still includes

∥eee−ttti∥2’s and ∥eee−rrrj∥2’s. Besides, the cross term 2∥eee−
ttti∥2∥xxx− rrrj∥2 is nonconvex.

To achieve stable and efficient optimization, we seek
solution from the MM framework. Specifically, we de-
velop a surrogate function, i.e. majorizer, for f(eee,oook),
such that the ℓ2-norm based terms become smooth and
linearized at eeek. To this end, we first linearize ∥eee− ttti∥2’s
and ∥eee− rrrj∥2’s according to Lemma 1:

−2γi,j(∥eee− ttti∥2 + ∥eee− rrrj∥2)
≤ −2(eee− ttti)

Tpppki,j − 2(eee− rrrj)
Tqqqki,j , (11)

where pppki,j =
γi,j(eee

k−ttti)
∥eeek−ttti∥2

and qqqki,j =
γi,j(eee

k−rrrj)
∥eeek−rrrj∥2

.
Secondly, applying Lemma 2 to the cross term results

in

2∥eee− ttti∥2∥eee− rrrj∥2
≤ aki,j∥eee− ttti∥22 + bki,j∥eee− rrrj∥22, (12)

with aki,j =
∥eeek−rrrj∥2

∥eeek−ttti∥2
and bki,j = ∥eeek−ttti∥2

∥eeek−rrrj∥2
, leading to a

convex envelope of the cross term.
Finally, combining (11) and (12) yields a surrogate

function f̃(eee,oook|eeek) for f(eee,oook) at eeek, given by

f̃(eee,oook|eeek)

=

m∑
i=1

n∑
j=1

[
(γk

i,j)
2−2(eee− ttti)

Tpppki,j−2(eee− rrrj)
Tqqqki,j

+∥eee−ttti∥22+∥eee−rrrj∥22+aki,j∥eee−ttti∥22+bki,j∥eee−rrrj∥22
]
,(13)

satisfying f(eee,oook) ≤ f̃(eee,oook|eeek).
With f̃(eee,wwwk|eeek), the optimization problem subject to

eee becomes the squared ℓ2-norm based problem, which is
a convex and smooth. Thus, setting the derivative with
respect to eee to zero, i.e., ∇eeef̃(eee,ooo

k|eeek) = 000, leads to the
following closed-form solution:

eeek+1 =

∑m
i=1

∑n
j=1

[
(1+ak

i,j)ttti+(1+bki,j)rrrj+pppk
i,j+qqqki,j

]
∑m

i=1

∑n
j=1(2+ak

i,j+bki,j)
. (14)

(2) update of oook+1

Denote βββ = [β1,1,, · · · , β1,n,, · · · , βm,1, · · · , βm,n]
T

with βi,j = si,j −∥eeek+1−ttti∥2−∥eeek+1−rrrj∥2. Hence, the
subproblem (7b) is simplified as

oook+1 = argmin
ooo

∥βββ − ooo∥22 s.t. ∥ooo∥0 ≤ κ. (15)

Note that when (15) is optimized, oook+1 will contain at
most κ nonzero components. Thus, the objective value can
be divided into two parts regarding the nonzero elements
and zero elements. Inspired by this, we first define Ψ
as the index set consisting of the indices of the nonzero

elements in ooo and ΨC as the index set comprising the
indices of zeros in ooo. In other words, oi′,j′ = 0 for
(i′, j′) ∈ ΨC , while oi,j ̸= 0 for (i, j) ∈ Ψ. Then, we
can divide the objective function (15) into two parts:

F(ooo)=
∑

(i,j)∈Ψ

(βi,j−oi,j)
2 +

∑
(i′,j′)∈ΨC

(βi′,j′−oi′,j′)
2. (16)

Since oi′,j′ = 0 for (i′, j′), (16) is recast as

F(ooo)=
∑

(i,j)∈Ψ

(βi,j−oi,j)
2 +

∑
(i′,j′)∈ΨC

β2
i′,j′ . (17)

To minimize F(ooo), oi,j should be equal to βi,j for all
(i, j) ∈ Ψ. Otherwise, the residual (oi,j−βi,j) will always
lead to the growth of F(ooo).

Combining the above analysis leads to

F(ooo) =
∑

(i′,j′)∈ΨC

β2
i′,j′ , (18)

which implies that F(ooo) is proportional to the loss induced
by zero elements in ooo. Hence, to minimize F(ooo) subject to
∥ooo∥0 ≤ κ, ΨC should contain the indices of the mn − κ
smallest (in absolute value) components of βββ, while Ψ
should contain the remaining κ indices corresponding to
the κ largest (in absolute value) components of βββ. It is
worth mentioning that though ∥ooo∥0 ≤ κ is fulfilled if ΨC

contains more than mn − κ indices of the smallest (in
absolute value) components of βββ, F(ooo) becomes larger
than that of ΨC with exactly mn− κ indices.

In summary, the update schedule for oook+1 is

oook+1 = Hκ(βββ), (19)

where Hκ is an element-wise hard thresholding operator:

Hκ(βi,j) =

{
βi,j , if |βi,j | ≥ µ,

0, otherwise,
(20)

where | · | is the absolute function of its argument. Herein,
µ is the κ-th largest element of |βββ|. If some components in
|βββ| are equal to µ, one can randomly keep several of these
equal elements and set others to zero such that ∥ooo∥0 = κ is
satisfied. That is, Hκ(βββ) should keep only κ components
of βββ when some of the elements are equal to µ. Otherwise,
the sparsity constraint cannot be satisfied. It should be
noted that such a random selection will not change the
objective function value. In addition, if there are less than
κ nonzero elements in βββ, then µ is the smallest nonzero
element of |βββ|.

Regarding the computational complexity, the subprob-
lem for estimating eee requires the complexity of O(mn).
In addition, the hard thresholding operation on βββ requires
O(κlog(mn)). This is because the κ-sparse vector Hκ(βββ)
can be efficiently computed in two steps. The first is to
sort the elements of βββ in their magnitude. The second
imposes sparsity on βββ by retaining the top κ of them.
Thus, the total complexity at one iteration is O(mn)
given the assumption that mn is greater than κ in outlier-
resistant elliptic positioning scenario. It is worth mention-
ing that eee-update only iterates once analytically to reduce
the computational complexity. Algorithm 1 summarizes
the steps for the proposed ℓ0-OS.
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Algorithm 1 AO for ℓ0-OS

Input: sss, κ, ttti, and rrrj
Initialize: eee0 and ooooooooo0 = 000.
while not converged do

Calculate eeek+1 according to (14).
Calculate oook+1 according to (19).

end
Output: Optimal location eee

As for the convergence, we have f(eeek+1, oook+1) ≤
f(eeek+1, oook) ≤ f̃(eeek+1, oook|eeek) ≤ f̃(eeek, oook|eeek) = f(eeek, oook).
That is, the objective is monotonically nonincreasing. In
addition, the f(eee,ooo) is lower bounded by zero. Hence, the
sequence of objective value converges to a limit point.

IV. Experiments

This section evaluates the performance of ℓ0-OS based
on both synthetic and real-world experimental data. The
proposed algorithm is compared to four SOTA methods,
namely, ℓ1-norm Lagrange programming neural network
(ℓ1-LPNN) [9], message passing (MP) [14], ℓq-norm im-
proved iterative reweighting (ℓq-IIRW) (0 ≤ q < 1) [17],
and ℓq-norm iteratively reweighted least squares (ℓq-
IRLS) (1 < q < 2) [8].

A. Experimental Settings

In our experiments, the synthetic experimental da-
ta is obtained by developing an MIMO system with
m = n = 8 in 2-D space. The locations of transmit-
ters are ttt1 = [−350,−200]Tm, ttt2 = [−350, 200]Tm,
ttt3 = [−200,−350]Tm, ttt4 = [−200, 350]Tm, ttt5 =
[200,−350]Tm, ttt6 = [200, 350]Tm, ttt7 = [350, 200]Tm,
ttt8 = [350,−200]Tm, respectively. The receivers are
located at rrr1 = [−500, 500]Tm, rrr2 = [500,−500]Tm,
rrr3 = [550, 0]Tm, rrr4 = [0, 550]Tm, rrr5 = [500, 500]Tm,
rrr6 = [0,−600]Tm, rrr7 = [−600, 0]Tm, rrr8 = [0, 0]Tm, re-
spectively. The true target location is eee∗ = [400, 200]Tm.

The localization performance is measured by root
mean square error (RMSE), defined as

RMSE =

√√√√ 1

N

N∑
i=1

∥eeei − eee∗∥22, (21)

where eeei is the estimated target location in the i-th trial.
In our simulations, RMSE is calculated with 1000 trials,
namely, N = 1000. In each trial, the proposed algorithm
will stop when ∥eeek−eeek−1∥2

∥eeek−1∥2
< 10−4. For ℓq-IIRW and

ℓq-IRLS, q = 0 and q = 1.5, respectively. Note that
κ can be very large in practice. Hence, we introduce a
hyperparameter p ∈ [0, 1] for evaluating the percentage of
outliers instead of evaluating κ. That is, κ = pmn for the
proposed ℓ0-OS.
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Fig. 1: Localization results of ℓ0-OS versus p and SNR
under GMM noise.

Fig. 2: Localization results of different algorithms under
GMM noise when SNR ranges from 14dB to 30dB.

B. Comparison of Different Methods under GMM
Noise

In this subsection, we utilize GMM to generate in-
dependent impulsive noise. The noise consists of two
Gaussian variables with different variances, modeling the
dense and sparse noise samples. The probability density
function (PDF) of GMM is given by:

φ(y) =
c1√
2πσ1

exp
(
− y2

2σ2
1

)
+

c2√
2πσ2

exp
(
− y2

2σ2
2

)
, (22)

where c1 = 1 − c2 with c2 ∈ [0, 1], and σ2
1 and σ2

2 are
two variances. To model impulsive noise, GMM requires
σ2
1 ≪ σ2

2 . In doing so, sparse and high power samples
generated by Gaussian with large variance σ2

2 are mixed
in the dense Gaussian noise with small variance σ2

1 . In
our experiments, we set c2 = 0.1 and σ2

2 = 100σ2
1 .

Firstly, we investigate the influence of hyperparameter
p of our algorithm on performance. Fig. 1 presents the
results, where the y-axis denotes p value and x-axis is
the SNR of GMM noise in dB. From Fig. 1, at a certain
SNR level, though there are some fluctuations, RMSE
decreases first and then gradually increases along with the
growth of p value. We take SNR = 20dB as an example.
When p = 1%, ℓ0-OS presents RMSE of 13.17m. By
increasing p from 1% to 10%, RMSE drops by 7m to
around 6.011m. If we keep increasing p to 15%, RMSE
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grows gradually to over 6.5m. Besides, the RMSE values
are comparable, when p ∈ [8%, 12%]. To be specific,
RMSEs are all smaller than 6.4m with minor differences.

Possible reason for such trend is that, for a small
p value, say p < 8%, there are still some outliers that
are not modeled by ooo. Thus, these undetected outliers
will obviously lead to large RMSEs. On the contrary,
when p keeps growing and finally is larger than the true
percentage of outliers, a part of normal entries will be
marked as outliers. As a result, the information loss makes
the increase of RMSE.

On the other hand, for a fixed p, RMSE decreases as
the SNR level varies from 14dB to 30dB. This trend is
straightforward since a larger SNR means weaker noisy
conditions. For instance, as we can observe from Fig. 1,
with p = 1%, the RMSE of ℓ0-OS is improved from
31.98m to around 5m when SNR gradually approaches
30dB.

Secondly, we compare our algorithm with four SOTA
methods. According to the above RMSE results and
discussions related to Fig. 1, we set p = 10% for our ℓ0-
OS. Fig. 2 shows the RMSE of various algorithms with a
wide range of SNR from 14dB to 30dB. Apparently, the
proposed algorithm leads their counterparts with a clear
margin. From Fig. 2, for most of the SNR levels, ℓ0-OS
improves the accuracy with around 1m compared to ℓ1-
LPNN and MP, while they have even more than 1m gain
compared to ℓq-IIRW and ℓq-IRLS. Though the accuracy
gain drops gradually when SNR value increases, the
superiority of our algorithm over the competing methods
is still observed clearly at all SNR levels. For example,
when SNR is 20dB, the RMSE of the proposed ℓ0-OS
is 7.691m. As a comparison, the RMSE values of ℓ1-
LPNN, MP, ℓq-IIRW, and ℓq-IRLS are 8.67m, 8.812m,
10.19m, and 9.963m, respectively. At 30dB, the accura-
cy of ℓ0-OS, ℓ1-LPNN, MP, ℓq-IIRW, and ℓq-IRLS are
2.451m, 2.953m, 2.7m, 2.79m, and 3.197m, respectively,
where the difference between our algorithm and other
approaches are reduced. But our method still provides
better estimates.

C. Comparison of Different Methods under
Exponential Noise

This subsection evaluates the performance of various
algorithms when one of the transmitters or receivers
corresponds to NLOS propagation. In such a case, 12.5%
of the BR measurements (8 out of 64) are polluted
by NLOS errors. Hence, we set p = 15% for our
ℓ0-OS. In the experiments, we generate NLOS errors
using exponential distribution first. Then, NLOS errors are
added to BR measurements associated to one randomly
selected transmitter or receiver. The standard deviation
of exponential distribution varies from 102m to 105m.
Besides, we add Gaussian noise with variance 100m2 to
the BR measurements as well.

As shown in Fig. 3, ℓ0-OS has the smallest RM-
SEs at all noise levels, while ℓq-IRLS has the worst

102 103 104 105
100

101

102

103

R
M

SE
 (

m
)

Fig. 3: Localization results of various algorithms when
one transmitter or receiver corresponds to NLOS propa-
gation.

localization performance among all algorithms. Besides,
ℓ1-LPNN, MP, and ℓq-IIRW are comparable, providing
RMSE around 3m. In particular, the localization accuracy
of our algorithm is around 2m, but lower than 2.5m at all
noise levels.

D. Comparison of Different Methods under Laplacian
Noise

In this subsection, we investigate the performance of
various algorithms in the presence of Laplacian noise. The
experimental settings are similar to those of subsection C,
except that the outliers are generated by Laplace distribu-
tion. In the experiments, we fix the variance of Gaussian
noise to 100m2 and then introduce outliers randomly to
one of the transmitters or receivers. Again, 12.5% of the
BR measurements (8 out of 64) are contaminated by the
Laplacian noise. Hence, we let p = 15% for our ℓ0-OS.

The positioning RMSEs are plotted in Fig. 4. It is
observed that the localization accuracy of ℓ1-LPNN, MP,
and ℓq-IIRW are around 2.9m at all noise levels. The
proposed ℓ0-OS outperforms the competing algorithms
with a clear margin, whose RMSE values are around 2m.
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Fig. 4: RMSEs of various algorithms when Laplacian
noise is randomly introduced to one transmitter or re-
ceiver.
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TABLE I: Performance of different algorithms in real
experiments.

Method ℓ0-OS ℓ1-LPNN MP ℓq-IIRW ℓq-IRLS
RMSE (m) 0.1007 0.3701 0.1643 0.2045 0.1766

E. Comparison of Different Methods using Real Data

Apart from computer simulations with the above
configuration, an acoustic localization system is imple-
mented for evaluating the proposed algorithm. The set-
up includes multiple spatially separated sound-making
speakers and a Huawei Mate 20 signal-receiving device
with Android 10.0 system, equipped with a Hisilicon
Kirin 980 CPU and 4 GB of memory. Estimation of
the speaker-smartphone distances is achieved by the gen-
eralized cross-correlation [28], where the chirp signals
are modulated to the range from 19kHz to 21kHz. We
conduct 60 ranging trials (N = 60) for each path. To
add NLOS errors in specific communication channels, the
common pipeline is that an experimenter takes the role
of barrier standing along the transmission path. Based on
the obtained speaker-smartphone distance, we construct
the BR measurements for estimating the target location.

For simplicity, the smartphone is located at the frame’s
origin, i.e., eee∗ = [0, 0]Tm. The acoustic localization
system consists of four transmitters and four receivers
(m = n = 4). The locations of the transmitters are
ttt1 = [0, 1]Tm, ttt2 = [2, 0]Tm, ttt3 = [0,−3]Tm, and
ttt4 = [−4, 0]Tm, respectively, while the receivers are
located at rrr1 = [1.4142, 1.4142]Tm, rrr2 = [−2, 2.2361]Tm,
rrr3 = [2.8284,−2.8284]Tm, and rrr4 = [3, 4]Tm, respec-
tively. To introduce NLOS errors, we obstruct the signal
transmission between the smartphone and rrr4 by an exper-
imenter. Thus, 4 out of 16 BR measurements are polluted
and p is fixed to 25% for the ℓ0-OS. The localization
results are presented in Table I. We observe that the ℓ0-
OS achieves more accurate location estimates in the real
situation compared to its four counterparts.

F. Discussion on Computational Complexity

In this subsection, we compare the five algorithms in
terms of computational complexity. As discussed before,
the complexity of our ℓ0-OS is O(mn). In general, con-
vergence of our algorithm can be achieved in few tens of
iterations. The ℓ1-LPNN method also costs O(mn) com-
plexity per iteration. However, it usually requires thou-
sands of iterations to converge when LPNN is discretely
realized. MP requires O(mn) complexity per iteration and
several tens of iterations to converge. For ℓq-IIRW and ℓq-
IRLS, they are in the framework of iteratively reweighted
least squares [29]. As a result, though their complexity
increases linearly with mn, the iteratively reweighted
procedure degrades their computational efficiency. Hence,
our proposed algorithm and MP outperform the remaining
methods in the view of computational efficiency.

TABLE II: Runtime (s) of various algorithms under
different scenarios.

Method ℓ0-OS ℓ1-LPNN MP ℓq-IIRW ℓq-IRLS
GMM noise 0.0078 0.0115 0.0029 0.0468 0.3418

Exponential noise 0.0094 0.0307 0.0026 0.0605 0.8957
Laplacian noise 0.0092 0.0302 0.0024 0.0595 1.7078

Real data 0.0027 0.0097 0.0018 0.0820 0.1617

To quantitatively evaluate the computational efficiency
of various methods, we tabulate the average CPU time
for the above experiments in Table II. It is observed that,
among all algorithms, ℓ0-OS is less efficient than MP only,
which confirms our discussion.

V. Conclusion

We present an effective method called ℓ0-OS for
robust MIMO localization in the presence of impulsive
noise. Specifically, it explores the outlier separation tech-
nique with an auxiliary variable. To characterize the
sparse nature of outliers, we impose sparsity constraint
on the auxiliary variable using ℓ0-norm. The resultant
problem is then solved by AO, where the target location
and auxiliary variable are updated in closed-form. By do-
ing so, the proposed model conducts outlier detection and
target localization in a one-shot framework. Experimental
results on both synthetic and real data have demonstrated
that ℓ0-OS is superior to four SOTA competing algorithms
with high localization accuracy and computational effi-
ciency.
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