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Abstract—The effectiveness of an image classification
system depends on the following two key components: 1)
the feature learning module and 2) the classification mod-
ule. A well-designed loss function can not only enhance
the classification ability of the latter but also improve the
feature extraction capabilities of the former. This article
devises a novel hypersphere loss function, which enhances
the intraclass compactness and interclass separability of
feature vectors given by the feature learning module. Fur-
thermore, a new generalized class center is introduced
into the loss function to handle the inevitable variability in
samples (such as illumination, background, blurriness, low
resolution, etc.) within the same class. Then, an alternative
learning strategy is employed to optimize trainable parame-
ters and class centers. Specifically, we first fix the trainable
parameters of the deep learning model and calculate class
centers using the exponentially weighted moving average
method. Subsequently, we fix the generalized class centers
and update the model’s trainable parameters using mini-
batch stochastic gradient descent. The proposed algorithm
is evaluated on a range of typical tasks, including stan-
dard image classification, face verification, object detec-
tion, and retail product checkout. The results demonstrate
that our proposed algorithm outperforms several state-of-
the-art approaches.

Index Terms—Constrained optimization, hypersphere,
image classification, metric learning.
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I. INTRODUCTION

INCORPORATING intraclass compactness and interclass
separability is crucial for improving the performance of

image classification algorithms. From the perspective of feature
representation, image classification algorithms typically contain
two primary steps. In the first step, a feature learning module
maps an image into a low-dimensional feature vector. Many
feature learning methods have been proposed, including linear
discriminant analysis (LDA) [1], principal component analysis
(PCA) [2], and neural networks [3], [4]. Among these, deep
neural networks, especially the convolutional neural network
(CNN), have achieved remarkable successes in image classifi-
cation tasks [5], [6]. CNN is a typical multilevel representation
method that stacks convolutional and pooling layers to extract
spatial structure information from images. Based on different
configurations of convolutional layers, a wide range of CNN
models have been proposed, such as ResNet [7], DenseNet [8],
EfficientNet [9], MobileNet [10], and more. In the second step,
the output vector from the feature learning module is used
for image classification. For CNN-based methods, the output
is typically a low-dimensional feature vector that captures the
spatial information from the original image. Subsequently, the
feature vector is multiplied by weight vectors for each class,
and the resulting values are used to calculate the probability
of each class using the softmax loss. The combination of CNN
and softmax is prevalent in image classification tasks [7]. The
softmax loss not only acts as a classifier but also can help adjust
the feature vectors to improve the performance of the feature
learning module. As a softened max operator, softmax will push
the feature vectors to fill the whole feature space [11]. In this
process, the magnitude of features from the same class may not
be equally amplified, resulting in imbalanced magnitudes among
feature vectors of the same category.

In order to improve classification accuracy, we hope that the
feature vectors generated by the feature learning module have
interclass separability and intraclass compactness. However,
empirical experiments have revealed that the intraclass similarity
of feature vectors obtained from CNN and softmax loss may be
lower than their interclass similarity [12]. Furthermore, it has
been observed that there are significant variations among feature
vectors within a specific class. These issues can potentially have
a negative effect on the classification accuracy of these methods.

To acquire discriminative features, an alternative approach is
to explore metric learning techniques [13] or design specialized
classification losses [5], [14], [15]. For instance, a center penalty
function known as center loss (CL) is introduced alongside the
original softmax loss [16]. The CL method and its variants
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can enforce the feature vectors of samples in the same class
gathered around their class centers. These class centers are
trainable parameters in this neural network and can be directly
learned from the training set. The CL method can improve the
intraclass compactness of feature vectors. However, it is worth
noting that CL may lead to training instability [17] and does not
guarantee the interclass separability of feature vectors given by
this approach.

Numerous studies have highlighted the potential benefits of
conducting classification tasks in the angular domain. For in-
stance, the approach in [18] combined the softmax loss with a
feature normalization process to address imbalanced magnitudes
of feature vectors within the same class. The article [3], [11]
concurrently applied the normalization process on both feature
vectors and weight vectors. The article [14] proposed an angular
softmax loss, assuming that the weight vectors in the last layer
can represent class centers in angular space. Consequently, it pe-
nalizes the angles between the features and their corresponding
weights. The large margin cosine loss in [15] reformulated the
softmax loss as a cosine loss by l2 normalizing both features
and weight vectors, and introduced a cosine margin term to
further maximize the decision margin in angular space. An
exclusive regularization was proposed to improve the interclass
separability by penalizing the angle between a weight vector and
its nearest neighbor in [5]. These studies demonstrated various
effective approaches for tackling classification challenges in
the angular domain, highlighting the importance of considering
angular representations to enhance classification performance.

Nonetheless, recent studies indicate that by conducting classi-
fication in the angular domain and incorporating the magnitudes
of feature vectors into this process, the performance may be
further improved. For instance, Meng et al. [19] proposed a
novel loss that performs classification in the angular domain
while utilizing the magnitude of the feature vector to measure
the quality of input images. The experimental results presented
in the article demonstrate that the proposed method achieves
exceptional performance in face recognition tasks. In another
study [12], a constrained center loss was proposed. Its objective
combines the standard softmax loss with a center loss, while also
introducing constraints on the magnitudes of the class center
vectors into the model. By selecting an appropriate magnitude
for the class centers, further enhancements in classification
performance can be achieved. However, it is important to note
that this method incurs a high computational cost for updating
class centers, and there is no guarantee of interclass separability.

In this article, the hypersphere loss is proposed, and the
class center in our method is no longer a point but a small
hypersphere. Consequently, all feature vectors gather around
their respective class centers, which we refer to as feature
hypersphere throughout this article. A feature hypersphere
serves as a generalized class center that can tolerate the inevitable
variability for samples within the same class. Notably, the cen-
ters of all feature hyperspheres are situated on the surface of a
larger hypersphere called class center hypersphere. To ensure
separation between the feature hyperspheres of different classes,
we introduce a class center separation function. The hypersphere
loss given in this article is constrained. Hence, an alternative

learning strategy is developed for training the model. In this
strategy, we first fix the trainable parameters in the deep learning
model and calculate the class centers based on the exponentially
weighted moving average (EWMA) method. Subsequently, we
keep the generalized class centers fixed and update the trainable
parameters in the deep learning model by mini-batch stochastic
gradient descent (SGD).

The rest of this article is organized as follows. The back-
grounds of image classification model, center loss, and con-
strained center loss are presented in Section II. In Section III,
we propose a hypersphere loss based on the geometry analysis
of d− 1-sphere. The numerical results for algorithm evaluation
and comparison are shown in Section IV. Finally, Section V
concludes this article.

II. BACKGROUND

A. Basic Structure of Image Classification Model

A typical image classification model based on deep learning
typically consists of the following two modules.

1) Feature learning module: This module is responsible for
extracting a discriminative low-dimensional feature vec-
tor from each image.

2) Classification module: In this module, the feature vectors
are matched with their corresponding labels.

Suppose that we are given a training set D = {{xxxi, yi}Ni=1},
where xxxi denotes the ith image sample, yi ∈ {1, . . . , C} is the
corresponding class label, and C is the number of classes in D.
The input of the feature learning module is an image sample xxxi,
and the output is the corresponding feature vector fff i ∈ Rd. The
classification module gives the predicted classification result
based on the feature vector fff i. The softmax loss is often used to
make decisions in the classification module. The mathematical
expression of softmax loss is given by

min
wwwk,Θ

Lsoftmax = min
wwwk,Θ

−
N∑
i=1

log
exp(www�

yi
fff i)∑C

k=1 exp(www
�
kfff i)

(1)

where wwwk ∈ Rd denotes the weight vector for the kth class in
the classification module, Θ is the collection of all trainable
parameters in the feature learning module. From (1), we know
that the feature learning module will give a discriminative feature
vector fff i by adjusting the trainable parameters in Θ, while the
classification module will minimize the softmax loss by search-
ing an appropriate weight vector for each class. For solving the
problem in (1), the mini-batch SGD method is utilized.

B. Center Loss

From empirical experiments, we see that although a model
with softmax loss can generate interclass separable feature vec-
tors to a certain extent, it cannot ensure the intraclass compact-
ness of these feature vectors. This characteristic may influence
the effectiveness of the softmax loss.
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To enhance the intraclass compactness, a center penalty was
proposed in [16], which is defined as

Lcenter =
1

2N

N∑
i=1

‖fff i − cccyi
‖2

2 (2)

where cccyi
∈ Rd is a trainable parameter, which represents the

corresponding class center of yi, and cccyi
∈ [ccc1, . . . , cccC ]. The

center penalty enhances the intraclass compactness by penal-
izing the Euclidean distance between the feature vectors and
their corresponding centers. Combining the softmax loss and
the center penalty, the objective of the center loss approach is
given as

Lsoftmax + λLcenter (3)

where λ is a tradeoff parameter. Similar to the softmax approach,
all parameters in this method can be optimized by mini-batch
SGD.

C. Constrained Center Loss

From [18], we know that the l2-normalization can reduce the
variation in feature magnitudes. With the l2-norm constraint, the
softmax loss can be modified as

min
wwwk,Θ

Lsoftmax s.t.‖fff i‖ = r ∀i = 1, . . . , N (4)

where r is a positive constant that denotes the magnitudes of
features. However, solving the problem in (4) is difficult due to
the nature of feature vectors, which is a very complex function
involving all parameters in the feature learning module.

To circumvent the intricate nonlinear optimization problem in
(4), the article in [18] introduced a feature normalization process.
As a result, the softmax loss can be rewritten as

min
wwwk,Θ

−
N∑
i=1

log
exp

(
rwww�

yi

fffi

‖fffi‖
)

∑C
k=1 exp

(
rwww�

k
fffi

‖fffi‖
) . (5)

To further improve the performance, the articles in [11] and [3]
also applied the normalization process to the weight vector wwwk

in (4). Their objective function is defined as follows:

min
wwwk,Θ

−
N∑
i=1

log
exp

(
r

www�
yi

fffi

‖wwwyi
‖‖fffi‖

)
∑C

k=1 exp
(
r

www�
kfffi

‖wwwk‖‖fffi‖
) . (6)

In addition, other relevant research studies [14], [15] have shown
that conducting classification in the angular domain can reduce
classification difficulty.

Inspired by the aforementioned research, the constrained
center loss (CCL) was proposed in [12], and its objective is
formulated as

min
wwwk,ccck,Θ

−
N∑
i=1

log
exp(www�

yi
fff i)∑C

k=1 exp(www
�
kfff i)

+
λ

2N

N∑
i=1

‖fff i − cccyi
‖2

2,

s.t. ‖ccck‖ = r ∀k = 1, . . . , C (7)

where ccck denotes the class center of kth class, and r is the radius
of a hypersphere where the class centers are located. The CCL
can constrain all class centers to the surface of a hypersphere
and make each feature vector gather around their respective
class centers. Due to the constraints of class centers, the im-
age classification within this model can be regarded as being
conducted in the angular domain. Furthermore, the adjustment
of the hypersphere radius incorporates the magnitude of features
into this method.

To solve this problem, an alternative training strategy is used.
First, the class centers are updated by solving the following
optimization problem:

min
ccck

1
2N

N∑
i=1

‖fff i − cccyi
‖2

2, s.t. ‖ccck‖ = r. (8)

Based on the Lagrange multiplier method, the class center of the
kth class can be updated as

ccck = r
1
N

∑N
i=1 τ(yi, k)fff i

‖ 1
N

∑N
i=1 τ(yi, k)fff i‖

(9)

where τ(yi, k) is an indicator function defined by

τ(yi, k) =

{
1, if yi = k,
0, otherwise.

Second, class centers are fixed in (7), and the train-
able parameters wwwk and Θ are updated using mini-batch
SGD. Finally, the first and second steps are repeated until
convergence.

While the CCL approach enhances classification accuracy, it
still has three noteworthy weaknesses as follows.

1) The loss function in (7) encourages feature vectors within
the same category to gather around their respective class
center. Nevertheless, it cannot ensure that feature vectors
from different categories are adequately separated.

2) The update of all class centers relies on (9). It is worth
noting that all samples in the training set are needed
to update centers. Notably, for large training sets, this
method demands substantial computational resources and
memory. In addition, it is inconvenient to combine this
method with the neural network training methods, such
as mini-batch SGD.

3) The CCL approach uses a single point as the class center
for features within the same class and makes a very
strong assumption that all feature vectors of the same
category should converge around this point. It overlooks
the potential influence of external factors like illumina-
tion, shooting angles, occlusion, and others on a class
center.

III. METHODOLOGY

Inspired by the geometric structure of the hypersphere, we
devise a novel objective in this article, which can overcome the
abovementioned shortcomings of CCL and further improve its
performance.
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A. Geometry Analysis of d-1-Sphere

Due to the constraints in CCL, all class centers are distributed
on the surface of a d-1-sphere with radius r1, which is called
class center hypersphere in this article.

To improve the interclass discrepancy, the class centers should
be scattered as much as possible on the surface of the class center
hypersphere. Moreover, to improve the intraclass compactness,
the feature vectors of the same class should be compactly cen-
tered around their class center. For such purposes, we assume
that the feature vectors of the same class will be distributed
in a hypersphere with radius a centered at its corresponding
class center, which is called feature hypersphere in this ar-
ticle. Therefore, for an image classification problem with C
categories, the centers of C feature hyperspheres should be
constructed on the surface of a d-1-sphere, and these feature
hyperspheres are discrete and do not overlap. Thus, the orig-
inal classification problem is transformed into the problem of
constructing C maximum nonoverlapping feature hyperspheres
with centers on the surface of the class center hypersphere.

For convenience, let us consider the low-dimensional sce-
nario illustrated in Fig. 1(a), where d = 3. In this figure, class
centers are distributed on the surface of the white class center
hypersphere with a radius of r. Each class corresponds to a
feature hypersphere centered at the respective class center, with a
radius of a. To ensure interclass separability, class centers should
be distributed as uniformly as possible on the surface of the
class center hypersphere. In addition, to ensure that the feature
hyperspheres do not overlap, adjacent feature hyperspheres must
either be positioned far apart from each other or be tangent
to each other. To obtain the maximum radius a for the feature
hyperspheres, we assume that all adjacent feature hyperspheres
are tangent to each other. For instance, in Fig. 1(a), two adjacent
blue feature hyperspheres, which are tangent to each other, have
their centers at points A and B, with an included angle of 2θ
between them. Fig. 1(b) shows a similar scenario in 2-D space.
From Fig. 1, we see that by adjusting the position of class
centers and their radius a, we can certainly construct C largest
nonoverlapping feature hyperspheres.

In the following, we will discuss how to estimate the radius a
for the feature hyperspheres. For convenience, we analyze this
in a 2-D space, as illustrated in Fig. 1(b). To ensure interclass
separability, it is crucial to prevent overlap among the feature
hyperspheres. To maximize the radius a of the feature hyper-
spheres, we assume that all adjacent feature hyperspheres are
tangent to each other. In this scenario, each feature hypersphere
truncates a hyperspherical cap from the class center hypersphere,
exemplified by the green shaded region in Fig. 1(b). Any such
hyperspherical cap’s area must be less than 1/C of the area
of the class center hypersphere; otherwise, interclass overlap
would ensue. Given that the diameter of the feature hypersphere
is 2a, it can be observed that the radius of the base of the
green hyperspherical cap, denoted as dis(E,F )/2, is at most
a. Consequently, the area of the green hyperspherical cap is
smaller than or equal to that of the yellow hyperspherical cap in

1An d-1-sphere with radius r can be defined asSd−1(r) = {xxx ∈ Rd : ‖xxx‖ =
r}.

Fig. 1. Schematic diagram of class center hypersphere and feature
hyperspheres in low-dimensional space. (a) In 3-D space. (b) In 2-D
space.

Fig. 1(b). Thus, the size of feature hyperspheres is appropriate as
long as the area of the yellow hyperspherical cap is less than or
equal to the 1/C area of the class center hypersphere. Following
this logic, we can infer the size of a. The details are given in
Appendix A of the Supplementary Material.

Besides, from Fig. 1, it is observed that all feature hyper-
spheres contain a small yellow concentric hypersphere inside.
These small concentric hyperspheres generalize the class center
from a point to a hypersphere. In this way, the generalized class
centers can tolerate some disturbances caused by unavoidable
external factors. Therefore, it is helpful to improve the represen-
tation ability and stability of class centers.

B. Hypersphere Loss

In the following, we propose the objective called hypersphere
loss (HL) based on the geometry analysis of d-1-sphere and
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devise the method to train models with this objective. For an
image classification problem, the formulation of hypersphere
loss is given by

min
wwwk,ccck,Θ

−
N∑
i=1

log
exp(www�

yi
fff i)∑C

k=1 exp(www
�
kfff i)

+
β

N(C−1)

N∑
i=1

C∑
l �=yi

ccc�yi
cccl

+
λ

2N

N∑
i=1

[ι(‖fff i − cccyi
‖2)‖fff i − cccyi

‖2]
2,

s.t. ‖ccck‖ = r ∀k = 1, . . . , C (10)

where ccck denotes the class center of kth class, r is the radius of
the class center hypersphere, λ and β are tradeoff parameters,
wwwk ∈ Rd is the weight vector for the kth class, Θ is the collec-
tion of all trainable parameters in the feature learning module.
ι(‖fff i − cccyi

‖2) is an indicate function defined as

ι(‖fff i − cccyi
‖2) =

{
0, ‖fff i − cccyi

‖2 < εa,

1, ‖fff i − cccyi
‖2 ≥ εa

(11)

where a is the radius of feature hypersphere, ε ∈ [0, 1] is a trade-
off parameter. A small ε will improve the interclass separability
and intraclass compactness, but a large ε will generalize the
class center from a point to a big region, which can enhance the
representation ability of the class center. We let ε = 0.05 in our
experiments.

The formulation (10) consists of the following four parts:

1) the softmax loss −∑N
i=1 log

exp(www�
yi

fffi)
∑C

k=1 exp(www
�
kfffi)

;

2) the generalized center penalty function
λ

2N

∑N
i=1{[ι(‖fff i − cccyi

‖2)‖fff i − cccyi
‖2]

2};
3) the class center separation function

β
N(C−1)

∑N
i=1

∑C
l �=yi

ccc�yi
cccl;

4) the hypersphere surface constraints ‖ccck‖ = r(k =
1, . . . , C).

The generalized center penalty function will make all feature
vectors converge toward their corresponding centers. For any
feature vector fff i, if the distance between the feature vector and
its corresponding center is larger than εa, the generalized center
penalty function will penalize the distance between them. For
any feature vector fff i, the class center separation function will
penalize the sum of the inner product between the class center
cccyi

of fff i and other class centers. Combined with the constraints
‖ccck‖ = r,∀k = 1, . . . , C, we can increase the angular separa-
tion between all class centers.

The loss function in (10) is a constrained optimization prob-
lem, and an alternative strategy is introduced to solve it. The
alternative strategy consists of the following two steps: 1) class
centers are updated; 2) all class centers are fixed, and we update
the weight vectorswwwk’s in the classification module and all train-
able parameters Θ in the feature learning module by mini-batch
SGD. The details of the alternative training approach are given
as follows.

1) Update Class Centers: In the first step, the weight vectors
wwwk’s in the classification module and all trainable parameters Θ
in the feature learning module are fixed. Thus, the class center
vectors ccck’s become the only parameters to be optimized in this

step, and the formulation (10) can be rewritten as

min
ccck

λ

2N

N∑
i=1

[ι(‖fff i − cccyi
‖2)‖fff i − cccyi

‖2]
2

+
β

N(C − 1)

N∑
i=1

C∑
l �=yi

ccc�yi
cccl,

s.t. ‖ccck‖ = r ∀k = 1, . . . , C. (12)

Based on the Lagrange multiplier method and some convex
optimization concepts, we can deduce that

ccck = r

1
N

∑N
i=1 δ(k, yi)

(
fff i − β

C−1

∑C
l �=yi

cccl

)
‖ 1
N

∑N
i=1 δ(k, yi)

(
fff i − β

C−1

∑C
l �=yi

cccl

)
‖2

(13)

where k = 1, . . . , C, δ(k, yi) is an indicator function given by

δ(k, yi) =

{
1, if yi = k and ‖fff i − cccyi

‖ ≥ εa

0, otherwise
. (14)

The derivation details of (13) are shown in Appendix B of the
Supplementary Material.

From the equation in (13), it is evident that all samples in the
training set are used during the class center update process. In
this case, this approach incurs a substantial computational cost.
If we only use a mini-batch of samples to update the class centers,
it may result in significant deviations of the computed class
centers from their actual positions. Consequently, this could pose
challenges to the convergence of the proposed algorithm.

In this article, we proposed an efficient class center updating
method based on mini-batch samples. The training process
unfolds in two phases. Before the t1th epoch, we employ the
standard softmax loss to train the model. After the t1th epoch,
we introduce the proposed class center updating method. In our
experiments, we set t1 = 5. This approach follows a warm-start
technique [13], which can be used to avoid the excessive loss
caused by random values in the initial state.

To enable the update of class centers based on mini-batch
samples rather than the entire training set, we have devised
two modification strategies as follows. 1) First, we ignore the
setting of the generalized class center in this step. In other words,
the indicator function δ(k, yi) is replaced by τ(yi, k). In this
way, all samples in a mini-batch are used to update the class
centers. Consequently, the stability of our proposed approach is
improved by increasing the number of samples used for updating
class centers. 2) Second, the EWMA is utilized to calculate class
centers. Thus, given a mini-batch with m samples, an auxiliary
variable vvvi is calculated according to

vvvi =
1

1 − φNc
(φcccyi

+ (1 − φ)fff i) , i ∈ [1, . . . ,m] (15)

where 0 < φ < 1 is a hyperparameter of EWMA (we set φ =
0.99 in our experiments), Nc represents the cumulative updates
of class centers, initially set to 0 and incremented by 1 after
all class centers have completed an update. The term 1

1−φNc

serves to mitigate the substantial bias introduced by the EWMA
method during the initial class center updates. As Nc increases,
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Algorithm 1: Classification based on hypershpere loss.

1: while t ∈ [1, . . . , T ] do
2: Randomly divide the training data into Q

mini-batches, where Q = �N
m	+ 1.

3: if 1 ≤ t ≤ t1 then
4: for q ∈ [1, . . . , Q] do
5: Use the softmax loss in (1) as the objective and

update the trainable parameters by mini-batch
SGD.

6: end for
7: else if t1 < t ≤ T then
8: for q ∈ [1, . . . , Q] do
9: (1) Randomly select a mini-batch of samples;

10: (2) Update auxiliary variable vvvi’s for all samples
in the mini-batch according to (15);

11: (3) Update all class centers based on (16);
12: (4) Nc = Nc + 1;
13: (5) Based on the objective in (17), update the

weight vectors wwwk’s in the classification module
and all trainable parameters Θ in the feature
learning module by mini-batch SGD.

14: end for
15: end if
16: end while

1
1−φNc approaches 1, and its impact becomes negligible. After
t1th epoch, when we get vvv’s for all samples in a mini-batch, we
can update the kth class center based on

ccck = r

∑m
i=1 τ(k, yi)

(
vvvi − β

C−1

∑C
l �=yi

cccl

)
‖∑m

i=1 τ(k, yi)
(
vvvi − β

C−1

∑C
l �=yi

cccl

)
‖2

(16)

where k ∈ [1, . . . , C].
2) Update Trainable Parameters: In the second step, we fix

all class centers ccck’s and update the weight vectors wwwk’s in
the classification module and all trainable parameters Θ in the
feature learning module. For the current mini-batch, the loss
function is

min
wwwk,Θ

−
m∑
i=1

log
exp(www�

yi
fff i)∑C

k=1 exp(www
�
kfff i)

+
λ

2m

m∑
i=1

{[ι(‖fff i − cccyi
‖2)‖fff i − cccyi

‖2]
2}. (17)

In objective (17), all cccyi
’s are known, wwwk’s and Θ together give

all trainable parameters. Therefore, we can directly use mini-
batch SGD to train the model and update these parameters.

In conclusion, we summarize the framework of our proposed
algorithm in Algorithm 1.

IV. EXPERIMENTS

In this section, we conduct several experiments to evaluate
the performance of our proposed algorithm. The datasets and
settings are given in Section IV-A. The properties of our method
are investigated in Sections IV-B–IV-D. Afterward, an ablation

TABLE I
DATASETS

study is shown in Section IV-E. Subsequently, the comparison
with other approaches is demonstrated in Sections IV-F–IV-H.
In addition, a supplementary experiment is shown in Appendix
C of the Supplementary Material to illustrate the intraclass
compactness and interclass separability of our method.

A. Datasets and Settings

First, the proposed algorithm is evaluated on three standard
image classification datasets: CIFAR-10 [20], CIFAR-100 [20],
Tiny ImageNet [21]. The settings of the training set and test set
follow the common practice in these datasets, which are given in
Table I. For CIFAR-10 and CIFAR-100, ResNet18 is equipped
as the backbone, while ResNet34 is used for Tiny ImageNet.
The mini-batch SGD with batch size 256, momentum 0.9, and
weight decay 5 × 10−4 is used in all experiments. For all these
three datasets, all algorithms are trained for 240 epochs. The
initial learning rate is 0.1 and divided by 10 at the 120th and
180th epoch.

To further investigate the performance of our proposed algo-
rithm, we conduct face verification on three different datasets.
Unlike standard image classification tasks, face verification is
an open-set problem. Specifically, models are trained for image
classification on the CASIA-WebFace dataset [22]. After that,
the trained feature learning modules will be used to conduct
face verification on LFW [12], CFP-FP [23], and AgeDB-
30 [24]. The details of the face verification datasets are also
given in Table I. For this task, the 20-layer SphereFace [6]
structure is equipped as the backbone. The training process
includes 40 epochs for all methods. Moreover, the learning
rate starts from 0.1 and is divided by 10 at the 20th and 30th
epoch.

Besides, we also investigate the performance of our proposed
algorithm in two practical applications: instance-level object
detection and retail product checkout. For instance-level object
detection, the Pascal VOC dataset is utilized. The training set
is formed by combining the trainval 2007 and trainval 2012
datasets, while the test2007 dataset is used for evaluation [25].
The retail product checkout (RPC) dataset2 is used in another
practical experiment. The details of these datasets are also
presented in Table I. In both tasks, Faster R-CNN structure [26]
is employed as the backbone. The training process includes 100
epochs. The learning rate, initially set at 0.0001, is multiplied
by 0.6 every 10 epochs.

2https://aistudio.baidu.com/datasetdetail/91732/0
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TABLE II
AVERAGE ACCURACY (%) OF 5 TRIES FOR VARIOUS λ’S AND β’S ON

CIFAR-10 AND CIFAR-100 DATASETS

In all experiments, each method was tested 5 times. According
to the setting in [12], we let r = 40 in our proposed algorithm
and the comparison methods that utilize this hyperparameter.
The feature dimension d = 512 in image classification tasks and
face verification tasks, while for the practical applications, the
feature dimension d = 2048.

B. Hyperparameter Discussion

λ and β are two tradeoff parameters in the hypersphere
loss, which can be used to balance the softmax loss, the
generalized center penalty function, and the class center
separation function. The datasets CIFAR-10 and CIFAR-
100 are used to discuss the influence of λ and β. We
try λ ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1} and β ∈
{0.001, 0.01, 0.1, 1}. The corresponding results are shown in
Table II. For both CIFAR-10 and CIFAR-100, the proposed
algorithm achieves the best result when λ = 0.002 and β = 0.1.
Hence, we use this setting in all the following experiments.
For CIFAR-10, the tradeoff parameter λ can be selected from
0.001 to 0.05, and β can be selected from 0.001 to 1. For
CIFAR-100, the λ can be adjusted from 0.001 to 0.01 and the
corresponding β can be selected from 0.001 to 1. As a result,
our proposed algorithm exhibits relatively stable performance
across these parameter variations. This suggests that, in practical
applications, we can efficiently select suitable values for λ and
β.

C. Performance Comparison on Different Backbones

In this experiment, the influence of hypersphere loss on
various feature learning modules is investigated. We com-
bine the hypersphere loss (or the original softmax) with
nine different feature learning modules, including ResNet18,
DenseNet121 [8], DLA [27], EfficientNet [9], MobileNet [10],
PreActResNet18 [28], PyramidNet [29], SimpleDLA [27], and
Transformer [30]. The corresponding results are shown in Table
III. In this table, “Transformer w/ PT” and“Transformer w/o
PT,” respectively, denote a Transformer model pretrained with
the ImageNet-21 k dataset and a Transformer model without

TABLE III
AVERAGE INACCURACIES (%) OF HYPERSPHERE LOSS AND SOFTMAX LOSS

WITH DIFFERENT FEATURE LEARNING MODULES ON CIFAR-10 AND
CIFAR-100 DATASETS

Fig. 2. Convergence on CIFAR-100.

pretraining. It is evident that the proposed hypersphere loss can
be integrated with various backbone models and consistently
outperforms the original softmax in all cases for both CIFAR-10
and CIFAR-100. Specifically, for CIFAR-10, the hypersphere
loss enhances the performance of DLA modules with softmax
from 95.62% to 96.07%, and it also significantly boosts the
performance of EfficientNet modules with softmax from 90.65%
to 93.95%. Similar improvements are observed on CIFAR-100.
For example, the performance of DLA modules with softmax
loss is 76.84%, but when the softmax is replaced by hypersphere
loss, the mean accuracy increases to 78.61%. For transformer
models, whether pretrained or not, the use of hypersphere loss
can improve their performance to some extent.

D. Convergence and Complexity Analysis

In the following, we investigate the convergence of our pro-
posed algorithm. The training losses of our proposed method on
different backbones are illustrated in Fig. 2. It can be observed
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TABLE IV
COMPLEXITY ANALYSIS ON TINY IMAGENET

that the proposed approach, regardless of the backbone used,
consistently converges within 240 epochs.

Next, we perform a complexity analysis for each algorithm
using two NVIDIA GeForce RTX 3090 graphics cards. All
experiments are conducted on the Tiny ImageNet dataset using
a ResNet34 backbone. The results presented in Table IV are the
averages of five independent replicate trials. In this table, the first
column lists the methods for complexity analysis, and their full
names are provided in Section IV-F. The second column shows
the training time of various algorithms. It is worth noting that
their inference time is similar to each other, so we omit them. On
average, the proposed algorithm requires approximately 10.2 h
for training. HL(10) is the proposed algorithm that updates the
class center at every ten mini-batch iterations. It takes roughly
7.8 h on average for training. However, in this case, the mean
accuracy of HL(10) decreases from 65.88% to 65.72%.

The third and fourth columns of TABLE IV present the num-
ber of extra parameters and floating-point operations (FLOPs)
introduced by the classification module of each method. In this
experiment, the feature learning module (ResNet34) contains
approximately 21.55M parameters, and the total number of
FLOPs during its forward propagation is around 941.69G. As
the table shows, the extra parameters and FLOPs of all clas-
sification modules are much smaller than that of the feature
learning module. For instance, the HL method introduces ap-
proximately 200K extra parameters, which is roughly 0.1%
of the backbone’s parameter count, and its extra FLOPs are
51.46M , roughly 0.005% of the backbone’s FLOPs. In addition,
compared to the original softmax, all other algorithms have a
certain increase in the number of extra parameters and FLOPs,
but this does not significantly affect the overall complexity.

The last column of the table provides the maximum GPU
memory usage for each method. It is observed that, compared to
the softmax, none of the other methods significantly increase the
maximum GPU memory consumption. The CCL method has the
highest GPU memory consumption, and the experiments show
that inappropriate hyperparameter settings for CCL may easily
lead to memory overflow.

E. Ablation Studies

The main characteristics of the proposed method include the
following.

TABLE V
ABLATION STUDIES ON CIFAR-10

1) The class center separation term is introduced.
2) The generalized class center is devised.
3) The class centers are updated by EWMA in each mini-

batch instead of using all samples in the training set to
update class centers in each epoch.

In this section, we will conduct ablation studies on the pro-
posed algorithm. CIFAR-10 is used as the evaluation dataset,
and ResNet18 is used as the backbones. The results are shown
in Table V. It is observed that when the class centers are updated
using the equation in (9) with all samples in the training set
per epoch, the verification accuracy is 95.24%. However, if we
update the class centers by EWMA per epoch, the performance
will decrease to 94.29%. By introducing the class center sep-
aration term, we can further increase the accuracy to 94.42%.
Next, by increasing the update frequency of class centers, the
accuracy of the proposed algorithm can be further improved
to 94.95%. Finally, by introducing the generalized class center
term, the performance of the proposed algorithm can achieve
95.76%. Specifically, in Table V, the only difference between
the experiments in row 2 and row 5 is whether to use the
generalized class center. The comparative analysis of the two
rows indicates that the generalized class center outperforms the
traditional class center. This observation is further corroborated
by comparing the outcomes of rows 3 and 7, and rows 4 and
8, respectively. Moreover, comparative analysis of rows 2 and
3, 5 and 7, and 6 and 8, reveals that the introduction of the
class center separation term also contributes to enhancing the
performance of the proposed algorithm. In summary, EWMA is
utilized to improve the efficiency of the proposed algorithm, but
it may influence its accuracy performance. By introducing the
class center separation term and the generalized class center, the
performance of our proposed algorithm is largely improved.

F. Performance Comparison on Image Classification

In the following, we compare our proposed algorithm with
several baselines or state-of-the-art methods, including the
original softmax, angular softmax loss (ASL) [14], exclusive
regularity (ER) [5], center loss (CL) [16], constrained center
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TABLE VI
VERIFICATION ACCURACIES (%) FOR VARIOUS ALGORITHMS ON THREE IMAGE CLASSIFICATION DATASETS OVER 5 RUNS

TABLE VII
ACCURARIES (%) FOR VARIOUS ALGORITHMS ON THREE FACE VERIFICATION DATASETS OVER 5 RUNS

loss (CCL) [12], Arcface [14], Cosface [15], hard-mining loss
(HML) [31], and multimargin loss (MML) [32]. In all com-
parison experiments, we run the experiments five times and
report the results in “best accuracy, mean accuracy, standard
deviation” as in [7]. The results on CIFAR-10, CIFAR-100,
and Tiny ImageNet are given in Table VI. The best result is
marked in bold for each dataset, while the second-best result
is marked with an underline. From Table VI, our proposed
classification module outperforms all other methods on all these
three datasets. For instance, the proposed algorithm’s best accu-
racy and mean accuracy are 95.95% and 95.76% on CIFAR-10.
The second best approach is achieved by the ER method; its
best accuracy and mean accuracy are, respectively, 95.53% and
95.40%. For CIFAR-100 and Tiny ImageNet, the performance
of the hypersphere loss is also better than other approaches.
The second-best accuracies for these two datasets are given by
CCL. In addition, our proposed algorithm exhibits low standard
deviation, indicating its effectiveness and stability across all
datasets.

G. Performance Comparison on Face Verification

In this section, we investigate the performance of our proposed
algorithm on face verification, which is an open-set problem.
The training is conducted on the CASIA-WebFace dataset, and
the face verification on LFW, CFP-FP, and AgeDB-30 is used
for testing. The standard protocol of unrestricted with labeled
outside data [33] is utilized in this experiment. We compare the
proposed algorithm with various methods, including the original
softmax, ASL [14], ER [5], CL [16], CCL [12], MML [32],

HML [31], Cosface [15], Arcface [14], and Magface [19]. We
also run the experiments 5 times and report the results in “best
accuracy, mean accuracy, standard deviation.” The results are
shown in Table VII. For LFW, MagFace achieves the best result
with the best accuracy of 99.35% and mean accuracy of 99.23%,
while the second best approach is our proposed algorithms with
the best accuracy of 99.25% and mean accuracy of 99.12%.
For CFP-FP, our proposed approach obtains the best result
96.19%, while the second best method is CCL with 96.07%. For
AgeDB-30, the proposed approach is the best with an accuracy of
92.49%, while the second best method is MagFace with 92.42%.

H. Performance Comparison on Practical Applications

In the following, the effectiveness of our algorithm is eval-
uated in two practical tasks: 1) instance-level object detection
and 2) retail product checkout. Both tasks require identifying
appropriate candidate boxes in target images and classifying the
objects within these candidate boxes. Our proposed method and
other comparative algorithms can be used to improve classifica-
tion accuracy in this process. We evaluate the algorithms using
two criteria. First, the standard mean of average precisions (AP)
at IoU = 0.53 is introduced to evaluate the overall model perfor-
mance. Second, the classification accuracy of the most suitable
candidate boxes for each target object in the image is used to
evaluate the classification modules. The experimental results,
including best values, average values, and standard deviations

3Intersection over Union (IoU): In object detection, it is used to determine
how well a predicted bounding box aligns with the ground truth bounding box
for an object.
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TABLE VIII
PERFORMANCE ON OBJECT DETECTION

TABLE IX
PERFORMANCE ON RETAIL PRODUCT CHECKOUT

from five trials, are presented in Tables VIII and IX. The best
result is marked in bold for each criterion, while the second-best
result is underlined. It is evident from these tables that our
proposed algorithm outperforms other methods in both AP0.5

and classification accuracy. For instance, in the instance-level
object detection, HL achieves the highest AP0.5 of 82.35%
and the best accuracy of 89.13%. The corresponding results
of the second-best approach, CCL, are 81.88% and 88.74%,
respectively. Under the same conditions, the best value of AP0.5

and classification accuracy for the softmax method are 78.26%
and 85.11%. Furthermore, the small standard deviation of the HL
algorithm, as shown in Tables VIII and IX, indicates its stability
in both the object recognition and retail product checkout tasks.
Visualizations of the results for these practical tasks can be found
in Appendix D of the Supplementary Material.

V. CONCLUSION

In this article, a hypersphere loss was proposed, which can
be used to improve intraclass compactness and interclass sep-
arability of feature vectors in image classification tasks. To
improve the interclass separability, a class center separation
function was devised. A generalized class center was utilized
to handle the inevitable disturbances of samples in the same
class. Furthermore, the constraints in the hypersphere loss can
make class centers distribute on the surface of a hypersphere
with a controllable radius. An alternative learning strategy was
utilized for training the model. First, all trainable parameters
in the deep learning model were fixed, and we calculated class
centers based on EWMA method. Second, the generalized class
centers given by the first step were fixed, and we updated the

trainable parameters in the deep learning model by mini-batch
SGD. We conducted experiments to analyze our algorithm’s
properties and compared its performance across various stan-
dard image classification tasks, face verification tasks, and two
practical applications. The experimental results demonstrated
that hypersphere loss, as a general framework, could be applied
to diverse tasks that involve image classification. In the future,
we will research techniques for adaptively adjusting feature
hypersphere radii based on feature distribution to enhance model
performance. In addition, we will explore innovative methods
for computing class centers, aiming to mitigate the impact of
approximate methods like EWMA on accuracy.
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