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A B S T R A C T

This short communication considers mitigating the negative effects of possibly unreliable path delay measure-
ments acquired in non-line-of-sight (NLOS) environments on the positioning performance, a problem deserving
further investigation within the expanding research area of elliptic localization. We present CASTELO, a
Convex Approximation based Solution To Elliptic Localization with Outliers, to achieve such a goal. Our proposal
corresponds to a mixed semidefinite (SD)/second-order cone (SOC) programming formulation derived from an
error-mitigated nonlinear least squares (LS) location estimator, presenting itself as a remedy for the neglect
of positivity of NLOS biases suffered by the majority of currently fashionable outlier-handling approaches. In
terms of analytical discussions, we provide rationales supporting the incorporation of the SOC constraints,
which serve to tighten the problem obtained after SD relaxation, and conduct a complexity analysis for the
ultimate mixed SD/SOC programming formulation. Simulations are carried out to confirm the strong ability
of CASTELO to attain reliable elliptic localization in the presence of NLOS outliers.
1. Introduction

Elliptic localization has lately become a central topic across the
fields of distributed multiple-input multiple-output (MIMO) radar,
sonar, and wireless sensor networks (WSNs) [1–3]. Such a positioning
scheme makes use of spatially separated transmitters and receivers to
find the location of a target, 𝒙 ∈ R𝐻 , in 𝐻-dimensional space (𝐻 = 2 or
3). In a cooperative (resp. noncooperative) manner, the signal emitted
from each transmitter will be relayed (resp. reflected) by the target
of interest and then picked up by the receivers. The corresponding
indirect path delays, also known as (a.k.a.) the bistatic ranges (BRs),
are acquired and utilized together with the known sensor positions in
determining 𝒙.

A procedure of least squares (LS) will normally be needed to make
statistical sense out of the sensor-collected erroneous measurement
data [2,3]. The key premise of the feasibility of LS techniques is that
the disturbances should be zero-mean Gaussian distributed, namely,
attributed to thermal fluctuations. However, the Gaussian noise as-
sumption can be easily violated in real-world situations, where adverse
environmental factors may come into play and, as a result, the sensor
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observations will be significantly biased [4]. Perhaps the most fre-
quently encountered phenomenon in this context giving rise to outliers
is the non-line-of-sight (NLOS) propagation of signals [5,6], which will
introduce a positive distance bias into the affected range measurement
and, eventually, greatly impairing the positioning accuracy.

Along the simplest line of thought, identify-and-discard (IAD) type
approaches may be devised to pick out the corrupted samples and
remove them from the data. For elliptic localization, this was accom-
plished in [7] based on the spectral graph theory, and in [8] with
two different data selection procedures. Nonetheless, the simplicity of
the IAD methodology comes at the costs of inevitable missed-detection
and/or false-alarms [4]. Unlike [7,8], the authors of [9–11] employed
the concept of robust statistics, to partly mitigate the negative impacts
of outliers on the performance of the elliptic location estimator. The
main idea is to replace the non-outlier-resistant 𝓁2 loss in the LS
formulation with candidates that can be less influenced by the large
fitting errors, e.g., the correntropy measure [9] and the 𝓁1 loss [10,
11]. A half-quadratic (HQ) algorithm was developed in [9] to tackle
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the complicated optimization problem established following the max-
imum correntropy criterion (MCC), whereas 𝓁1-norm minimization
has been performed by means of the Lagrange programming neural
network (LPNN) [10] and iterative message passing (MP) [11], re-
spectively. Despite their superior outlier-resistance compared to the
non-robust LS schemes, all these statistically robustified elliptic loca-
tion estimators overlooked a crucial aspect: the NLOS propagation of
signals always tends to positively bias the range-based measurements,
and it has actually become commonplace for localization practitioners
to take advantage of this positivity towards even better positioning
performance [4,5,12–14].

This short communication puts forward CASTELO, a Convex Ap-
proximation based Solution To Elliptic Localization with Outliers, to tackle
the open challenge of overlooking the positive biasedness properties
in NLOS environments during the derivations of many existing error-
mitigated elliptic location estimators. In simple terms, CASTELO em-
ploys mixed semidefinite (SD)/second-order cone (SOC) programming
to deal with a nonconvex nonlinear LS problem established by introduc-
ing additional bias-representing estimation variables and integrating
new designs for the relationship between them and the original NLOS
biases. The remainder of this contribution is organized as follows.
Section 2 describes the system model. The essence of CASTELO is
subsequently unveiled in Section 3, in which we formulate elliptic
localization in NLOS scenarios as an error-mitigated LS problem and
then frame it within a mixed SD/SOC programming framework. The
rationale for incorporating the SOC constraints and the complexity
of CASTELO are also analyzed. Simulation results are included in
Section 4. Finally, Section 5 concludes the paper.

2. System model

Elliptic localization refers to estimating the unknown position of
a signal-reflecting/relaying target, 𝒙, from the indirect path delay/BR

easurements:

̂𝑚,𝑙 = ‖𝒙 − 𝒕𝑚‖2 + ‖𝒙 − 𝒔𝑙‖2 + 𝑝𝑚,𝑙 , 𝑚 = 1,… ,𝑀, 𝑙 = 1,… , 𝐿 (1)

obtained by employing multiple transmitters and receivers, which are
known to be located at {𝒕𝑚} and {𝒔𝑙}, respectively [3]. Here, ‖ ⋅ ‖2 is
the Euclidean norm and {𝑝𝑚,𝑙} are the BR measurement errors.

As the emphasis of this work is on elliptic localization in NLOS
situations, the measurement errors {𝑝𝑚,𝑙} are further decomposed as

𝑝𝑚,𝑙 = 𝑛𝑚,𝑙 + 𝑏𝑚,𝑙 , (2)

where 𝑛𝑚,𝑙 represents the lower-level Gaussian noise induced by ther-
mal effects, and 𝑏𝑚,𝑙 is a random variable that denotes the NLOS bias
due to obstruction in the (𝑚, 𝑙) transmitter–target–receiver path.

The system model described in (1) and (2) serves as the foundation
for our work, and whether during the estimator derivations or in the
simulations, we will consistently adhere to and stay within the scope
defined by it.

In the literature, various statistical characterizations exist for 𝑏𝑚,𝑙,
such as those employing uniform, Gaussian, and exponential distribu-
tions [12]. Nevertheless, we will refrain from imposing any specific
distribution constraints on 𝑏𝑚,𝑙 during the derivation of our mixed
D/SOC programming based LS solution. It is, only when a particular
istribution needs to be selected for the purpose of generating 𝑏𝑚,𝑙

from a simulation standpoint, that we will opt for a specific choice
(e.g., uniform, Gaussian, or exponential). In contrast, the estimator
derivations will operate under the following three assumptions: (i)
decomposability of 𝑝𝑚,𝑙 into 𝑛𝑚,𝑙 and 𝑏𝑚,𝑙, (ii) Gaussianity of 𝑛𝑚,𝑙, and
(iii) bias-like property of 𝑏𝑚,𝑙 that it manifests as a positive bias with
a magnitude generally much greater than |𝑛𝑚,𝑙| under NLOS conditions
and simply reduces to zero under line-of-sight (LOS) conditions.
2

3. Mixed SD/SOC programming based LS solution for NLOS miti-
gation in elliptic localization

3.1. Formulation derivations

We start our derivations of the error-mitigated LS formulation by
reshaping the BR model as

�̂�𝑚,𝑙 − 𝑑𝑡𝑚 = 𝑑𝑠𝑙 + 𝑏𝑚,𝑙 + 𝑛𝑚,𝑙 , 𝑚 = 1,… ,𝑀, 𝑙 = 1,… , 𝐿, (3)

where 𝑑𝑡𝑚 = ‖𝒙 − 𝒕𝑚‖2 and 𝑑𝑠𝑙 = ‖𝒙 − 𝒔𝑙‖2 are dummy variables
introduced for the corresponding true target-sensor distances.

If we neglect second-order terms in 𝑛𝑚,𝑙, squaring both sides of (3)
will yield

�̂�2𝑚,𝑙 − 2�̂�𝑚,𝑙𝑑𝑡𝑚 + (𝑑𝑡𝑚)
2 ≈ (𝑑𝑠𝑙 )

2 + 𝑐𝑚,𝑙 + 2𝑛𝑚,𝑙(𝑑𝑠𝑙 + 𝑏𝑚,𝑙),

𝑚 = 1,… ,𝑀, 𝑙 = 1,… , 𝐿, (4)

here

𝑚,𝑙 = 𝑏2𝑚,𝑙 + 2𝑏𝑚,𝑙𝑑𝑠𝑙 . (5)

To simplify the resulting formulation, we treat {𝑐𝑚,𝑙} instead of
𝑏𝑚,𝑙} as the variables for biases associated with the indirect path
elays, and disregard the equality constraints in (5) describing the
elationship between {𝑐𝑚,𝑙}, {𝑏𝑚,𝑙}, and {𝑑𝑠𝑙 }. In so doing, our error-
itigated nonlinear LS problem can be built upon (4) as

min
𝒙,{𝑐𝑚,𝑙}

𝑀
∑

𝑚=1

𝐿
∑

𝑙=1
𝑤𝑚,𝑙

(

�̂�2𝑚,𝑙 − 2�̂�𝑚,𝑙𝑑𝑡𝑚 + (𝑑𝑡𝑚)
2 − (𝑑𝑠𝑙 )

2 − 𝑐𝑚,𝑙
)2, (6)

here a weighting factor 𝑤𝑚,𝑙 is introduced to take into consideration
he disparity in 𝑛𝑚,𝑙 between different paths. In a maximum likelihood
ense, it should be equal to the inverse of the variance of 2𝑛𝑚,𝑙(𝑑𝑠𝑙 +
𝑚,𝑙) [15]. Nonetheless, since {𝑑𝑠𝑙 } are dependent on the unknown target
ocation and even the a priori statistical knowledge of {𝑛𝑚,𝑙} could be
xtravagant in practice, we somewhat compromise on such issues and
ollow [4] to set 𝑤𝑚,𝑙 = 1 − �̂�𝑚,𝑙∕

∑𝑀
𝑚=1

∑𝐿
𝑙=1 �̂�𝑚,𝑙, i.e., assigning more

onfidence to the nearby/LOS-prone links.
The nonlinear LS estimator (6) is nonconvex because of the Eu-

lidean norm terms incorporated by the dummy variables {𝑑𝑡𝑚} and
𝑑𝑠𝑙 }. Furthermore, in regard to the newly-introduced variables {𝑐𝑚,𝑙}
hat represent the transformed biases, the problem (6) is not well-posed
ince the relationship (5) is discarded. To tackle these challenges, we
pply approximations to handle the nonconvexity and put forth addi-
ional designs for the free parameters {𝑐𝑚,𝑙}, resulting in the following
onvex programming problem:

min
,{𝑐𝑚,𝑙},{𝑑𝑡𝑚},{𝑔𝑡𝑚},{𝑔𝑠𝑙 },{𝑢𝑚,𝑙},𝑧

𝑀
∑

𝑚=1

𝐿
∑

𝑙=1

[

𝑤𝑚,𝑙
(

�̂�2𝑚,𝑙 − 2�̂�𝑚,𝑙𝑑𝑡𝑚 + 𝑔𝑡𝑚 − 𝑔𝑠𝑙 − 𝑐𝑚,𝑙
)2

+ 𝜆1
(

𝑐2𝑚,𝑙 + (𝑑𝑡𝑚)
2) + 𝜆2𝑢

2
𝑚,𝑙

]

,

s.t. 𝑐𝑚,𝑙 ≥ 0, 𝑚 = 1,… ,𝑀, 𝑙 = 1,… , 𝐿, (7a)

𝑔𝑡𝑚 =
[

𝒕𝑚
−1

]𝑇 [

𝑰𝐻 𝒙
𝒙𝑇 𝑧

] [

𝒕𝑚
−1

]

, 𝑚 = 1,… ,𝑀,

(7b)

𝑔𝑠𝑙 =
[

𝒔𝑙
−1

]𝑇 [

𝑰𝐻 𝒙
𝒙𝑇 𝑧

] [

𝒔𝑙
−1

]

, 𝑙 = 1,… , 𝐿, (7c)
[

𝑰𝐻 𝒙
𝒙𝑇 𝑧

]

⪰ 𝟎(𝐻+1)×(𝐻+1), (7d)

�̂�2𝑚,𝑙 − 2�̂�𝑚,𝑙𝑑𝑡𝑚 + 𝑔𝑡𝑚 + 𝑢𝑚,𝑙 ≥ 𝑔𝑠𝑙 , 𝑢𝑚,𝑙 ≥ 0,

𝑚 = 1,… ,𝑀, 𝑙 = 1,… , 𝐿, (7e)

‖𝒙 − 𝒕𝑚‖2 ≤ 𝑑𝑡𝑚, 𝑚 = 1,… ,𝑀, (7f)

here 𝑰 𝑖 and 𝟎𝑖×𝑗 denote the 𝑖 × 𝑖 identity matrix and the 𝑖 × 𝑗 zero
atrix, respectively.
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Now, let us elucidate the formulation (7), which we refer to as
CASTELO, in more detail. In (7a), nonnegativity constraints are im-
posed upon the bias-representing variables {𝑐𝑚,𝑙} by making use of
he positivity of the decomposed NLOS bias term 𝑏𝑚,𝑙. The SD cone
onstraints in (7b) and (7c) are derived from

𝑡
𝑚 =

(

𝑑𝑡𝑚
)2 = ‖𝒙 − 𝒕𝑚‖22 (8)

nd

𝑠
𝑙 =

(

𝑑𝑠𝑙
)2 = ‖𝒙 − 𝒔𝑙‖22, (9)

espectively, where {𝑔𝑡𝑚} and {𝑔𝑠𝑙 } are the second-order versions of
he corresponding distance-representing variables. SD relaxation takes
lace in (7d), achieved by discarding the rank-1 requirement for the
onconvex equality constraint 𝑧 = 𝒙𝑇 𝒙 characterizing the relationship
etween the location-representing vector variable 𝒙 and a new variable
introduced to denote its squared Euclidean distance. The inequality

onstraints in (7e) are general consensus nonnegativity constraints
ased on the one-sided biasing property of the NLOS errors just like
7a), except that they are now imposed in the quadratic form:

�̂�𝑚,𝑙 − 𝑑𝑡𝑚)
2 ≥ (𝑑𝑠𝑙 )

2 = 𝑔𝑠𝑙 , 𝑚 = 1,… ,𝑀, 𝑙 = 1,… , 𝐿. (10)

𝑢𝑚,𝑙} are variables added to these quadratic nonnegativity constraints
or slightly loosening them in possibly infeasible cases [14]. The hy-
erparameters 𝜆1 and 𝜆2 are both penalization factors. Regarding 𝜆1,
t is required when the problem is ill-posed, and it helps constrain
he newly-introduced bias-representing variables {𝑐𝑚,𝑙} to a reason-
ble size [16]. On the other hand, 𝜆2 safeguards against overly loose
onnegativity constraints in (7e). We will delve into the impact of
hese hyperparameters, numerically, in Section 4. Additionally, the SOC
onstraints in (7f) are deduced from the transmitter–target distance
elationship: 𝑑𝑡𝑚 = ‖𝒙 − 𝒕𝑚‖2, 𝑚 = 1,… ,𝑀 . Their inclusion is moti-

vated by the potential of such SOC constraints to tighten the problem
obtained after a straightforward SD relaxation [17], as outlined in the
proposition below.

Proposition 1. The constraints in (7f) are tighter than those defined by
(7b) and (7d).

Proof. Employing the Schur complement condition [16], we have the
following equivalence for (7d):
[

𝑰𝐻 𝒙
𝒙𝑇 𝑧

]

⪰ 𝟎(𝐻+1)×(𝐻+1) ⟺ 𝒙𝑇 𝒙 ≤ 𝑧. (11)

It then becomes evident that, through (7b) and (7d), the following are
being imposed:

𝑔𝑡𝑚 = ‖𝒕𝑚‖22 − 2𝒕𝑇𝑚𝒙 + 𝑧 ≥ ‖𝒙 − 𝒕𝑚‖22, 𝑚 = 1,… ,𝑀. (12)

The inequality constraints in (12), when considered along with2

(𝑑𝑡𝑚)
2 ≤ 𝑔𝑡𝑚, 𝑚 = 1,… ,𝑀, (13)

escribe how the SD relaxation is typically applied in such a con-
ext [18,19]. Clearly, (12) and (13) define weaker conditions compared
o (7f), and this justifies our choice to impose (7f) instead of (13) in our
ASTELO formulation. □

To enhance clarity of presentation, we bring in Table 1 to explicitly
utline the definition of the variables involved with (7).

2 The constraints in (13) can be derived from (8) [18,19].
3

p

Table 1
Definition of variables in (7).

Variable Definition

𝒙 Target location

𝒕𝑚 Location of the 𝑚th transmitter

𝒔𝑙 Location of the 𝑙th receiver

𝑐𝑚,𝑙 Transformed bias associated with the
(𝑚, 𝑙) transmitter–target–receiver path

𝑑𝑡
𝑚 Euclidean distance between the 𝑚th transmitter and the target

𝑔𝑡𝑚 Squared Euclidean distance between the 𝑚th transmitter and the target

𝑔𝑠𝑙 Squared Euclidean distance between the target and the 𝑙th receiver

𝑢𝑚,𝑙 Small parameter added to the quadratic nonnegativity constraint associate
with the (𝑚, 𝑙) transmitter–target–receiver path for slightly loosening it in
possibly infeasible cases

𝑧 Squared Euclidean distance for 𝒙

𝑤𝑚,𝑙 Weighting factor introduced to take into consideration the disparity in
Gaussian noise between different paths and assign more confidence to the
nearby/LOS links [4]

�̂�𝑚,𝑙 BR measurement associated with the (𝑚, 𝑙)
transmitter–target–receiver path

𝜆1 Penalization factor required when (7) is ill-posed,
which helps constrain {𝑐𝑚,𝑙} to a reasonable size
[16]

𝜆2 Penalization factor that safeguards against
overly loose nonnegativity constraints in (7e)

3.2. Complexity analysis

The worst-case complexity for implementing mixed SD/SOC pro-
gramming via a generic interior-point algorithm is on the order of [6]
√

√

√

√

√

𝑁SD
∑

𝑗=1
𝐷SD,𝑗 + 2𝑁SOC

(

𝑁Var

𝑁SOC
∑

𝑗=1
𝐷2

SOC,𝑗 +𝑁2
Var

𝑁SD
∑

𝑗=1
𝐷2

SD,𝑗

+ 𝑁Var

𝑁SD
∑

𝑗=1
𝐷3

SD,𝑗 +𝑁3
Var

)

log
( 1
𝜈

)

, (14)

where 𝑁Var, 𝑁SOC, 𝑁SD, 𝐷SOC,𝑗 , 𝐷SD,𝑗 , and 𝜈 represent the number
f the optimization variables, the number of the SOC constraints, the
umber of the SD cone constraints, the dimension of the 𝑗th SOC con-

straint, the dimension of the 𝑗th SD cone constraint, and the precision,
respectively. As there are in total 𝑁Var = 𝐻 + 2𝑀 + 𝐿 + 2𝑀𝐿 + 1
optimization variables, 3𝑀𝐿 + 𝑀 + 𝐿 SD cone constraints of size

(corresponding to the constraints in (7a), (7b), (7c), and (7e)), 1
D cone constraint of size 𝐻 + 1 (corresponding to the constraint
n (7d)), and 𝑀 SOC cone constraints of size 𝐻 + 1 (corresponding
o the constraints in (7f)), the worst-case computational complexity
f solving (7) with interior-point methods is ((𝑀𝐿)3.5). The LPNN
termed 𝓁1 − 𝙻𝙿𝙽𝙽) and MP (termed 𝙼𝙿) algorithms adopted in the two
epresentative existing works [10,11] within the field of statistically
obustified elliptic localization, in contrast, result in (𝑁LPNN(𝑀 + 𝐿))
nd (𝑁MP𝑀𝐿) complexity, respectively, where 𝑁LPNN is the number
f steps required for discretely implementing the LPNN and 𝑁MP the
umber of MP iterations.

To summarize, the computational cost of implementing CASTELO
s higher than those of several existing robust statistical approaches.
his difference in complexity is attributed to the fact that among the
pproaches we consider, our mixed SD/SOC programming based LS
olution is the sole convex programming based technique implemented
sing interior-point methods. On the contrary, both benchmarking
chemes are lightweight nonlinear location estimators directly im-

lemented through advanced iterative optimization solvers. Such a
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Fig. 1. RMSE versus upper bound on uniformly distributed bias error.
disparity between convex programming based methods and direct non-
linear methods is not uncommon and has been widely observed in
related research3 [4,13,20].

4. Numerical results

This section carries out numerical studies to evaluate the perfor-
mance of the presented mixed SD/SOC programming based nonlin-
ear LS solution for NLOS mitigation in elliptic localization (termed
CASTELO, code available at https://github.com/w-x-xiong/PEP-SDP1
). The multistatic system being simulated consists of 𝑀 = 3 trans-
mitters, 𝐿 = 4 receivers, and a target to be located, all of which are
deployed in two-dimensional (2-D) space (to accommodate the hard-
coded 2-D configuration used in some of the existing elliptic location
estimators). Specifically, their positions are set as 𝒙 = [100, 100]𝑇
m, 𝒕1 = [−200,−300]𝑇 m, 𝒕2 = [−200, 300]𝑇 m, 𝒕3 = [200, 300]𝑇 m,
𝒔1 = [−450,−450]𝑇 m, 𝒔2 = [450, 450]𝑇 m, 𝒔3 = [0, 600]𝑇 m, and
4 = [600, 0]𝑇 m. We conduct comparisons among CASTELO, 𝓁1-LPNN,
MP, and several typical elliptic localization approaches without special
designs for handling outliers, including the LPNN in [2] (termed 𝓁2-
LPNN) and the exact solution in [3] (termed exact). The localization
accuracy is assessed via the root-mean-square error (RMSE) computed
based on 100 Monte Carlo (MC) runs:

√

1
100

∑100
𝑖=1 ‖�̃�

{𝑖} − 𝒙{𝑖}‖22, where �̃�
denotes the location estimate and (⋅){𝑖} is the index of the MC samples.
Simulations were performed on a laptop with a 2.8 GHz CPU and 8 GB
of RAM. The convex optimization problem was solved using the Se-
uMi solver embedded within the MATLAB CVX package [21]. Unless

heir impact on the performance of CASTELO is being evaluated, the
wo hyperparameters 𝜆1 and 𝜆2 are set to 0.01 and 1, respectively, the
alues of which are empirically observed to result in decent estimation
erformance. With regard to the strategy for generating the measure-
ent noise in the simulations, we consider the lower-level disturbances
𝑛𝑚,𝑙} to follow independent and identically distributed (i.i.d.) zero-
ean Gaussian distributions with a constant standard deviation of 1 m,

iz., 𝑛𝑚,𝑙 ∼  (0, 1), ∀(𝑚, 𝑙). On the other hand, we will explore various
istributions to characterize the NLOS biases {𝑏𝑚,𝑙} in the following
hree separate subsections, as previously discussed in Section 2.

.1. Localization performance with uniform {𝑏𝑚,𝑙}

We start by borrowing ideas from [4,6] to model {𝑏𝑚,𝑙} as i.i.d.
niform distributions. Typically, a lower bound and an upper bound

3 One perspective is to consider it as the trade-off for the benefit of convex
rogramming based methods, which consistently deliver a global solution due
o the convex nature of the problems they address, i.e., a trait not shared by
heir direct nonlinear estimator counterparts.
4

should be provided to specify an interval from which random numbers
following a continuous uniform distribution are generated. We set such
a lower bound to zero and investigate the RMSE as a function of
the upper bound. The results are demonstrated in Fig. 1. Observably,
CASTELO has the best performance, outperforming not only the non-
robust 𝓁2 schemes 𝓁2-LPNN and exact but also the off-the-shelf robust
statistical approaches MP and 𝓁1-LPNN.

4.2. Localization performance with Gaussian {𝑏𝑚,𝑙}

Next, we adopt another widely used strategy [22] to model {𝑏𝑚,𝑙}
as i.i.d. non-zero-mean Gaussian distributions instead. As the BR mea-
surement errors {𝑝𝑚,𝑙} now manifest themselves as Gaussian mixtures
with two components, we additionally introduce a mixture proportion
parameter 𝛽 ∈ (0, 1) into the model, as per conventions commonly
followed in the relevant literature [22]. This leads to the following
specific decomposition of 𝑒𝑚,𝑙:

𝑒𝑚,𝑙 = 𝛽 (0, 1) + (1 − 𝛽) (𝜇NLOS, 𝜎
2
NLOS), ∀(𝑚, 𝑙), (15)

which will still adhere to the three assumptions we made during the
estimator derivations if the mean of the NLOS-representing Gaussian
component 𝜇NLOS and the standard deviation 𝜎NLOS are properly config-
ured. With 𝜇NLOS and 𝜎NLOS fixed at 20 m and 1 m, respectively, Fig. 2
plots the RMSE versus the mixture proportion of the first Gaussian
mixture component (namely, 𝛽). We observe that the performance of all
five estimators improves as the first GM component gradually prevails
(viz., as the environment changes from severe NLOS to mild NLOS). In
particular, CASTELO delivers the smallest RMSE for the whole range
of 𝛽 being examined. The performance superiority of CASTELO is also
evident in Fig. 3 demonstrating how the RMSE changes with 𝜇NLOS ∈
[10, 20] m, under the conditions 𝛽 = 0.5 and 𝜎NLOS = 1 m.

4.3. Localization performance with exponential {𝑏𝑚,𝑙}

In this subsection, we use exponential distributions, one more fre-
quently employed NLOS-modeling scheme [12], to characterize {𝑏𝑚,𝑙}.
Assuming that {𝑏𝑚,𝑙} are i.i.d. exponential processes, we vary their
mean from 2 m to 10 m and evaluate the performance of different
location estimators at these various levels of NLOS contamination. The
corresponding RMSE plot is displayed in Fig. 4. Clearly, we can observe
that CASTELO, once more, yields the lowest RMSE values among the
five approaches.
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w

Fig. 2. RMSE versus mixing proportion of first Gaussian mixture component.
Fig. 3. RMSE versus mean of second Gaussian mixture component.
Fig. 4. RMSE versus mean of exponentially distributed bias error.
.4. Computational complexity

We have recorded the average run-times taken by 𝓁2-LPNN, exact,
𝓁1-LPNN, MP, and CASTELO in the last three experimental subsections,

hich are 0.0034 s, 0.0238 s, 0.0037 s, 0.0003 s, and 0.6556 s,
5

respectively. While CASTELO exhibits a longer run-time compared to
the existing direct nonlinear methods, its practicality for location-based
services is not entirely compromised (namely, a duration of around
0.6 s should still be deemed acceptable for location-based services of
common purposes).



Signal Processing 218 (2024) 109380W. Xiong et al.

g
i
t
c
s
S
i
h
t
t
D
t
w
e

4

t
h
t
p
f

Fig. 5. CASTELO’s RMSE variation with penalization factors 𝜆1 and 𝜆2.
Indeed, the computational complexity of our mixed SD/SOC pro-
ramming based LS solution, owing to its convex programming nature,
s not optimally low. In what follows, we offer several potential avenues
owards reducing the complexity. First, in our numerical tests, the
onvex optimization problem was handled using the general problem
olver SeDuMi integrated in the MATLAB CVX toolbox. While invoking
eDuMi incurs extra processing time due to the conversion of the

nput convex programming problem into the standard form, researchers
ave observed that this processing accounts for approximately half of
he total CPU time [23]. If a convex programming solver specifically
ailored for the problem is employed instead of the universal solver Se-
uMi, the CPU time can be further decreased. Moreover, transitioning

o the C/C++ programming language, as opposed to MATLAB which
e consider here only for computer simulations, may also substantially
nhance the computational speed in real-world operations.

.5. Impact of penalization factors

An additional aspect worthy of investigation is the selection of
he two penalization factors in the formulation (7) and, particularly,
ow it influences CASTELO’s estimation performance. To evaluate
his, in Fig. 5, we utilize the experimental setup of Section 4.1 and
resent a three-dimensional stem graph depicting the RMSE variation
or CASTELO with respect to 𝜆1, 𝜆2 ∈ {10−4, 10−3, 10−2, 10−1, 100, 101}.

The upper bound on the i.i.d. uniformly distributed NLOS bias errors
{𝑏𝑚,𝑙} is fixed at 10 m. We observe that most (𝜆1, 𝜆2) parameter settings,
including the one we adopted in the previous experimental subsections
(i.e., 𝜆1 = 0.01 and 𝜆2 = 1), demonstrate reasonably low RMSE values
on a comparable scale. Nevertheless, configurations with an excessively
large value for 𝜆1 lead to a noticeable deterioration in the estimator’s
performance.

5. Conclusion

This short communication identified an unresolved issue within
the problem domain of elliptic localization in NLOS environments:
the positivity of the NLOS bias errors was ignored in many of the
current approaches for managing outliers in the BR measurements. In
order to remedy such deficiencies and incompleteness, we put forward
CASTELO, a convex approximation based solution to elliptic local-
ization with outliers. CASTELO involves applying the technique of
mixed SD/SOC programming to tackle an error-mitigated nonlinear LS
6

estimation problem, which is established by introducing alternatives for
the bias-representing variables and redefining the relationship between
them and the original NLOS biases. Tightness and complexity analyses
justified our incorporation of the SOC constraints and confirmed that
CASTELO is in general computationally affordable, respectively. Nu-
merical simulations were conducted to substantiate the effectiveness of
CASTELO for NLOS-resistant elliptic localization. Prospective directions
for future research include (i) carrying out real-world elliptic localiza-
tion experiments and (ii) designing advanced outlier-handling schemes
to better suit the actual elliptic localization conditions.
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