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Abstract 

This contribution studies passive elliptic positioning (PEP) with unknown transmitter locations, a 
localization technique having great potential applicability ranging from underwater wireless sensor net- 
works to intelligent transportation systems. Specifically, we aim to address the challenge of employing 
PEP in complex real-world environments where outliers may exist, by using the concept of robust 
statistics. To achieve such a goal, we replace the � 2 loss in the traditional nonlinear least squares for- 
mulation by a differentiable cost function that possesses outlier-resistance. The neurodynamic approach 
of Lagrange programming neural network is then adopted to solve the resultant nonconvex statistically 
robustified PEP problem in a computationally efficient manner. Simulations and acoustic positioning 
experiments demonstrate the performance superiority of our proposal over its competitors. 
© 2023 The Franklin Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

Target localization has been a critical research area for decades, especially in telecommu-
ications [1] , mobile communications [2] , sonar [3] , and wireless sensor networks (WSNs)
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Fig. 1. Illustration of (a) EP and (b) PEP with M = 1 , H = 2, and L = 4. 
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4] . There are two fundamental components, namely, signals bearing the target information
nd receivers with known coordinates to pick up the signals. Based on them, localization
lgorithms are developed. The multistatic setup, in particular, is rapidly advancing due to its
bility to use multiple separated antennas for signal transmission and reception. This makes it
 promising solution for conducting localization, as signals from a number of spatially diverse
ntennas can provide more information about the target’s position. One notable application
n this context is the distributed multiple-input multiple-output (MIMO) radar [5–8] , and the
orresponding location estimation problem is more widely known as elliptic positioning (EP)
r elliptic localization [9] . 

Mathematically, EP refers to finding the location x ∈ R 

H of a signal-reflecting target in
 -dimensions ( H = 2 or 3), based on the indirect bistatic range (BR) measurements [10] : 

ˆ  m,l = r m,l + δm,l = ‖ x − t m 

‖ 2 + ‖ x − s l ‖ 2 + δm,l , m = 1 , . . . , M, l = 1 , . . . , L (1)

ollected using an array of spatially separated transmitters and receivers, whose positions
re known a priori and denoted by { t m 

∈ R 

H } and { s l ∈ R 

H } , respectively. In Eq. (1) , { δm,l }
re the measurement errors, and { r m,l } and { ̂  r m,l } are the error-free BRs and observed BRs,
espectively. EP got its name from the geometric interpretation of such a localization problem:
very r m,l with H = 2 induces a certain ideal-BR-representing ellipse on which the target
ies, with the associated transmitter and receiver being its foci [10] . A two-dimensional (2-
) illustration is given in Fig. 1 (a), where the transmitter, target, and receivers are denoted
y a circle, a triangle, and squares, respectively. Geometrically speaking, x is located at the
ntersection of the four ellipses. By comparison, in 2-D time-of-arrival (TOA) [resp. time-
ifference-of-arrival (TDOA)] based localization, the target is located by intersecting multiple
ircles [resp. hyperbolic curves]. Since the last decade, EP has emerged as a popularly used
ocalization technique in various applications, such as distributed MIMO radar [11] , sonar
12] , WSNs [13] , and radio frequency identification (RFID) systems [14] . 

.1. Related works 

Over the years, many least squares (LS) formulations and algorithms have been devised
o make statistical sense out of BR measurement data { ̂  r m,l } immersed in the zero-mean
aussian disturbances { δm,l } . Generally speaking, there are direct and indirect approaches.
he direct methodology processes the received signals to directly calculate the target loca-

ion by H -dimensional search or other similar methods, at the cost of huge computational
omplexity. The indirect approach, on the contrary, determines x by solving estimation prob-
ems established from Eq. (1) . Depending on the optimization criterion relied on, they can be
12151 
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oughly categorized into three types: closed-form or exact solutions [11,15–18] , semidefinite
rogramming (SDP) [19,20] , and iterative methods that are employed to directly realize the
onlinear LS (NLS) estimator [21,22] . While explicit algebraic solutions are famous for their
implicity, convex relaxation approaches usually have a higher level of noise-tolerance (i.e.,
ess governed by the threshold effect). Their direct NLS counterparts, in comparison, will be
apable of striking a nicer balance between computational efficiency and estimation accuracy
f properly initialized. 

For multistatic systems, there are application scenarios of EP where it would be more
ppropriate to assume that the prior knowledge of the transmitter positions is unavailable,
amely, in a passive EP (PEP) configuration. A typical example is underwater WSNs with a
implified hardware structure, where the moored buoys may be exempted from determining
nd broadcasting their own positions [23,24] . The concern of being unable to acquire the
osition information of transmitters in time exists in location-based intelligent transportation
ystems as well [25] , given that the neighboring map of a certain on-road vehicle is always
hanging. In addition to the BR measurements Eq. (1) which are associated merely with
he indirect signal transmission paths, PEP with unknown { t m 

} also utilizes the direct path
omponents [24] : 

ˆ 
 m,l = d m,l + εm,l = ‖ t m 

− s l ‖ 2 + εm,l , m = 1 , . . . , M, l = 1 , . . . , L, (2)

here { εm,l } , { d m,l } , and { ˆ d m,l } are the observation errors, the error-free direct ranges, and the
bserved direct ranges, respectively. An illustration of 2-D PEP based on Fig. 1 (a) is offered
n Fig. 1 (b). It is plainly seen that for H = 2 every d m,l defines a receiver-centered circle
n which the transmitter must lie. Analogous to the situation of EP, the LS estimation of
 and { t m 

} from { ̂  r m,l , ˆ d m,l } with zero-mean Gaussian distributed { δm,l , εm,l } in PEP can be
erformed either linearly in closed-form [24] or nonlinearly by means of SDP [26] . Later
n, there followed extensions of PEP into the more flexible cases of imperfect transmitter
lock synchronization [27] and unknown signal propagation speed [28] , respectively. The two
orresponding estimation problems have been addressed similarly by linear LS [27] and/or
DP techniques [27,28] . 

The impact of unreliable sensor observations should further be taken into account in prac-
ical localization scenarios. In multistatic systems, outliers might occur because of the mutual
nterference of multiple transmitted signals under the low signal-to-interference-plus-noise ra-
io (SINR) regime, or attributed to the non-line-of-sight (NLOS) propagation. Such phenom-
na are common not only in daily terrestrial environments (e.g., indoor positioning [29] and
ehicle self-localization in urban canyons [30] ) but also at the oceanic scenes that involve
utonomous underwater vehicles [31] . As the occurrence of outliers obviously violates the
ero-mean Gaussian noise assumption in the sensor observations, the positioning performance
f the traditional LS schemes will be deteriorated greatly if no preventive measures are put
n place [32] . A lot of effort has been made to reduce the negative effects of outliers on the
R-only EP estimator, e.g., those that resort to the balancing parameter approximation [33–
5] or robust statistics [36–38] . Nonetheless, the extension of the problem to PEP remains
pen to further investigation because of the model disparity between PEP and EP. 

.2. Motivation and contribution 

As outlined in what follows, the motivation and contribution of our study are basically
hreefold: 
12152 
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(a) This work addresses the outlier-sensitivity from which the off-the-shelf SDP-based PEP
approach [26] may suffer, by developing a computationally efficient neurodynamic op-
timization solution based on the Lagrange programming neural network (LPNN) [39] .
In this paper, we specifically focus on the case of PEP, which differs from the existing
LPNN solution that is designed for non-passive EP. By considering PEP, our research
extends the application of LPNN to a novel and challenging context. We believe that
this distinction adds value to the existing literature by addressing a specific problem
that has not been previously explored using the LPNN framework. 

(b) Additionally, our approach incorporates robustness considerations, which are lacking
in conventional PEP schemes that were derived by following the non-outlier-resistant
LS criterion [24,26] . our LPNN scheme minimizes a certain differentiable, statistically
robustified objective function for PEP and, thus, achieving robustness to the presence
of unreliable data. We also discuss in detail how to choose the appropriate objective
function in an operational setting. By addressing the presence of outliers, our method
enhances the reliability and accuracy of the location estimation results in adverse local-
ization environments. 

(c) Furthermore, while the majority of techniques in the literature on EP and PEP were
validated just by random synthetic data, this contribution includes results of not only
computer simulations but also acoustic positioning experiments. Here, real experimental
data that can generally be modeled as zero-mean Gaussian distributions (resp. contain
outliers) were collected during sound-based ranging without (resp. with) human body
obstructions. Through these extensive studies, the superiority of our proposal over [26] in
terms of outlier-resistance and computational efficiency is demonstrated. 

.3. Paper organization and notations 

The remainder of this paper is structured as follows. Section 2 briefly reviews the maxi-
um likelihood estimation (MLE) formulation for PEP in zero-mean Gaussian noise and the

epresentative existing work [26] , and provides an introduction to the background of LPNN.
ection 3 develops our LPNN-based algorithm, whose important properties including the sta-
ility and computational complexity are discussed in Section 4 . Performance evaluations are
onducted in Section 5 . Finally, Section 6 concludes the article. 

Notations: Boldface lower-case and boldface capital letters are used to denote vectors and
atrices, respectively. ‖ · ‖ 2 stands for the � 2 -norm. | · | represents the absolute deviation

unction. (·) T , (·) −1 , and ∇ (·) are the transpose, inverse, and gradient operators, respectively.
 a×b ∈ R 

a×b represents the a × b zero matrix. A � 0 (resp. A � 0 ) means that A is a positive
emidefinite (resp. definite) matrix. diag (·) (resp. blkdiag (·) ) denotes a square (resp. block)
iagonal matrix with the given inputs on its main diagonal. 

. Problem formulation and preliminaries 

.1. MLE formulation for PEP in zero-mean Gaussian noise 

Based on the principle of MLE, PEP under the assumption that { δm,l , εm,l } are zero-mean
ncorrelated Gaussian processes with variances { σ 2 

r ,m,l , σ
2 
d ,m,l } is formulated as [10,40] 

min 

x , { t m } 

M ∑ 

m=1 

L ∑ 

l=1 

[ ( ˆ r m,l − ‖ x − t m 

‖ 2 − ‖ x − s l ‖ 2 
)

2 /σ 2 
r ,m,l + 

( ˆ d m,l − ‖ t m 

− s l ‖ 2 
)

2 /σ 2 
d ,m,l 

] 
. (3)
12153 
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.2. Modified NLS estimator 

A natural way to handle nonconvex NLS problems like Eq. (3) is to cast them as quadrat-
cally constrained quadratic programs (QCQPs) [38,41] , which permit a convenient approxi-
ate solution with the help of semidefinite relaxation (SDR) [42] . Nevertheless, as there are
any auxiliary distance variables involved with this kind of NLS formulation (i.e., associated
ith every � 2 -norm terms), simply applying SDR thereto will often give rise to tightness is-

ues and result in unreliable location estimates [43] . To bypass these shortcomings, the authors
f [26] performed a nonlinear model transformation to Eqs. (1) and (2) before establishing
 modified weighted NLS problem. They, unlike [38] , defined auxiliary variable only for the
ransmitter-target distances: d 

t 
m 

= ‖ x − t m 

‖ 2 (for m = 1 , . . . , M). As such, squaring both sides
f r m,l − d 

t 
m 

= ‖ x − s l ‖ 2 , substituting r m,l with ˆ r m,l − δm,l , and neglecting { δ2 
m,l } brought them

o 

1 
2 

( ˆ r 2 m,l − ‖ s l ‖ 2 2 

) + s T l x − 1 
2 ‖ x ‖ 2 2 − d 

t 
m ̂

 r m,l + 

1 
2 (d 

t 
m 

) 2 ≈ ‖ x − s l ‖ 2 δm,l , 

m = 1 , . . . , M, l = 1 , . . . , L. (4)

nalogously, for the direct ranges Eq. (2) the following relations hold: 

1 
2 

( ˆ d 

2 
m,l − ‖ s l ‖ 2 2 

)
+ s T l t m 

− 1 
2 ‖ t m 

‖ 2 2 ≈ ‖ t m 

− s l ‖ 2 εm,l , m = 1 , . . . , M, l = 1 , . . . , L. (5)

ewriting Eqs. (4) and (5) in a more compact matrix form b ≈ A z + e , yields an approximate
eighted NLS problem 

1 : 

min 

z 
( b − A z ) T W ( b − A z ) (6)

here 

 = 

[
x 

T , t T 1 , . . . , t 
T 
M 

, ‖ x ‖ 2 2 , ‖ t 1 ‖ 2 2 , . . . , ‖ t M 

‖ 2 2 , d 

t 
1 , . . . , d 

t 
M 

, (d 

t 
1 ) 

2 , . . . , (d 

t 
M 

) 2 
]
T ∈ R 

H + H M+1+3 M 

(7)

enoting the parameter vector formulated as a replacement for the intractable ML estimation
roblem Eq. (3) . Subsequently, [26] followed a procedure that had perhaps become standard-
zed in the literature on SDP-based localization [41,44,45] to construct a matrix Z as Z = z z T 

nd utilized it to re-express the objective function of Eq. (6) and the constraints specifying
elations between the elements of z all in a disciplined convex programming form Grant and
oyd [46] . Relaxing Z = z z T to 

[
Z , z ; z T , 1 

] � 0 (H + H M +2+3 M ) ×(H + H M +2+3 M ) ultimately yields
 disciplined SDP problem, which can be easily solved using the MATLAB CVX package
47] . 

.3. PEP in outlier environment 

To remedy the vulnerability of Eqs. (3) and (6) in the practical situations where { ̂  r m,l , ˆ d m,l }
ay contain outliers, here we formulate the following statistically robustified variant of
q. (3) : 

min 

 , { t m } 

M ∑ 

m=1 

L ∑ 

l=1 

[ 
ψ 

( ˆ r m,l − r m,l 
) + ψ 

( ˆ d m,l − d m,l 

)] 
, (8)
1 Please see Appendix B in [26] for the definitions of the regressand vector b ∈ R 

2ML , regressor matrix A ∈ 

 

(2ML) ×(H + H M+1+3 M) , error vector e ∈ R 

2ML , and the weighting matrix W ∈ R 

(2ML) ×(2ML) . 
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here ψ(·) is a certain differentiable cost function that is less sensitive to outliers than its � 2
ompetitor. 

The primary goal of this work is to develop algorithms for effectively solving Eq. (8) 2

nd, even more crucially, doing so in a computationally feasible way. Our solution is built
pon the LPNN [39] , whose fundamental operating mechanism is explained in the following
ubsection. 

.4. LPNN 

LPNN is a commonly used neurodynamic approach for solving differentiable nonlinear
ptimization problems with equality constraints [39] . This methodology is based on the aug-
ented Lagrange multiplier theory, using the neural dynamics to drive neuron state trans-

ormation. When the network reaches its equilibrium, an optimal solution that satisfies the
onstraints can be obtained by measuring the neuron outputs. 

Consider a general nonlinear constrained optimization problem: 

min 

u 
f ( u ) , s.t. g ( u ) = 0 M×1 , (9)

here u = [ u 1 , . . . , u N ] T ∈ R 

N , f ∈ R 

N → R , and g ∈ R 

N → R 

M . The LPNN tackles
q. (9) by constructing the augmented Lagrangian: 

 ( u , λ) = f ( u ) + λT g ( u ) + 

ρ

2 h( u ) , (10)

here λ = [ λ1 , . . . , λM 

] T ∈ R 

M is a vector containing the Lagrange multipliers and the last
erm is an augmented term that is added to improve convexity and stability, with ρ > 0 being
he augmented Lagrangian parameter [39] . 

As for the use case of Eq. (9) , in the LPNN there are N variable neurons and M Lagrange
eurons to hold u and λ, respectively. The associated dynamical equations are 

1 

ε

d u 

dt 
= −∂L ( u , λ) 

∂ u 

, (11a)

1 

ε

d λ

dt 
= 

∂L ( u , λ) 

∂ λ
, (11b)

here t is the time variable and ε a time constant depending on the neural circuit. In this
aper, we simply assume that ε = 1 . While Eq. (11a) aims to seek for a solution of u with
he minimum objective value, Eq. (11b) plays the role of guiding the solution trajectory
owards the feasible region. Obviously, the objective and constraint functions have to be
ll differentiable so that the dynamics described by Eq. (11) are enabled. When the LPNN
ynamics settle down at an equilibrium point, the output of the neurons will correspond to a
arush-Kuhn-Tucker solution for Eq. (9) , i.e., satisfying the first-order necessary conditions
f optimality. 

The augmented term in Eq. (10) will accelerate the convergence of the neurodynamics,
nd any neural state that does not satisfy the constraints will be penalized by it. In the initial
tate, the constraints might be severely violated and hence the augmented term forces the
2 The general form of Eq. (8) offers us a higher degree of flexibility in different scenarios. While the specific 
iscussions about how we choose the objective function of Eq. (8) according to the PEP environments, will be given 
n Section 5 . 
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tate to approach the feasible region quickly. As the network approaches the feasible region,
t will have gradually less impact on the convergence. When the network finally reaches a
table state, the augmented term will be equal to 0, i.e., not affecting the optimal solution. 

. Algorithm development 

In this section, the LPNN is applied to cope with Eq. (8) . 

.1. Equality constrained reformulation of Eq. (8) 

By incorporating additional auxiliary distance variables, the unconstrained optimization
roblem Eq. (8) can be equivalently written as 

in 

y 

M ∑ 

m=1 

L ∑ 

l=1 

[
ψ( ̂  r m,l − d 

t 
m 

− d 

s 
l ) + ψ( ˆ d m,l − d m,l ) 

]
, 

s.t. (d 

t 
m 

) 2 = ‖ x − t m 

‖ 2 2 , m = 1 , . . . , M, (12a)

(d 

s 
l ) 

2 = ‖ x − s l ‖ 2 2 , l = 1 , . . . , L, (12b)

 

2 
m,l = ‖ t m 

− s l ‖ 2 2 , m = 1 , . . . , M, l = 1 , . . . , L, (12c)

 

t 
m 

≥ 0, m = 1 , . . . , M, (12d)

 

s 
l ≥ 0, l = 1 , . . . , L, (12e)

 m,l ≥ 0, m = 1 , . . . , M, l = 1 , . . . , L, (12f)

here ψ(d 

t 
m 

, d 

s 
l ) and ψ(d m,l ) are alterable robust loss functions imposed upon the indirect

nd direct path components, and y is a vector containing H + H M + M + L + ML decision
ariables: 

 = 

[
x 

T , t T 1 , . . . , t 
T 
M 

, d 

t 
1 , . . . , d 

t 
M 

, d 

s 
1 , . . . , d 

s 
L , d 1 , 1 , . . . , d M, 1 , d 1 , 2 , . . . , d M,L 

]
T ∈ R 

H + H M + M + L+ M L

(13)

Clearly, the existence of inequality constraints in Eqs. (12d) , (12e) and (12f) impedes the
irect application of LPNN. In the Appendix, we show that these inequality constraints can
ctually be removed under mild assumptions on the range measurements, thereby simplifying
he formulation to 

in 

y 

M ∑ 

m=1 

L ∑ 

l=1 

[
ψ( ̂  r m,l − d 

t 
m 

− d 

s 
l ) + ψ( ˆ d m,l − d m,l ) 

]
, 

s.t. (d 

t 
m 

) 2 = ‖ x − t m 

‖ 2 2 , m = 1 , . . . , M, (14a)

(d 

s 
l ) 

2 = ‖ x − s l ‖ 2 2 , l = 1 , . . . , L, (14b)

 

2 
m,l = ‖ t m 

− s l ‖ 2 2 , m = 1 , . . . , M, l = 1 , . . . , L, (14c)
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.2. Dynamical equation derivations 

The augmented Lagrangian of Eq. (14) is 

 ρ ( y , λ) = 

M ∑ 

m=1 

L ∑ 

l=1 

[ 
ψ( ̂  r m,l − d 

t 
m 

− d 

s 
l ) + ψ( ˆ d m,l − d m,l ) 

] 
+ 

M ∑ 

m=1 

λm 

[
(d 

t 
m 

) 2 − ‖ x − t m 

‖ 2 2 

]

+ 

L ∑ 

l=1 

λM+ l 
[
(d 

s 
l ) 

2 − ‖ x − s l ‖ 2 2 

] + 

M ∑ 

m=1 

L ∑ 

l=1 

λM + L+ M (l−1)+ m 

(
d 

2 
m,l − ‖ t m 

− s l ‖ 2 2 

)

+ 

ρ

2 

M ∑ 

m=1 

(
(d 

t 
m 

) 2 − ‖ x − t m 

‖ 2 2 

)
2 + 

ρ

2 

L ∑ 

l=1 

(
(d 

s 
l ) 

2 − ‖ x − s l ‖ 2 2 

)
2 

+ 

ρ

2 

M ∑ 

m=1 

L ∑ 

l=1 

(
d 

2 
m,l − ‖ t m 

− s l ‖ 2 2 

)
2 , (15)

here λ ∈ R 

M + L+ M L is the Lagrange multiplier vector. As described in Eq. (10) , the last three
erms in Eq. (15) serve as auxiliary terms within the augmented LPNN model that are added
o improve convexity and stability, with ρ > 0 being the augmented Lagrangian parameter
39] . 

The choice of different values for ρ can have an impact on the effectiveness of the aug-
ented terms in LPNN. Simply put, an appropriate value of ρ can help accelerate convergence

39] , while too large/small ρ will lead to instability of the dynamics. In Section 5 , we will
ive an explanation regarding the selection of ρ in our numerical tests. 

According to Eq. (11) , the dynamical equations for the LPNN handling Eq. (14) will be 

d x 
d t 

= −2 

M ∑ 

i=1 

( t i − x ) · (
λi + ρ

[
(d 

t 
i ) 

2 − ‖ x − t i ‖ 2 2 

])

− 2 

L ∑ 

j=1 

( s j − x ) · (
λM+ j + ρ

[
(d 

s 
j ) 

2 − ‖ x − s j ‖ 2 2 

])
, 

i = 1 , . . . , M, j = 1 , . . . , L, (16)

d t i 
d t 

= −2( x − t i ) ·
(
λi + ρ

[
(d 

t 
i ) 

2 − ‖ x − t i ‖ 2 2 

])
− 2 

L ∑ 

j=1 

( s j − t i ) ·
[
λM + L+ M ( j−1)+ i + ρ

(
d 

2 
i, j − ‖ t i − s j ‖ 2 2 

)]
, i = 1 , . . . , M, (17)

d d t i 
d t 

= 

L ∑ 

j=1 

−d ψ( ̂ r i, j −d t i −d s j ) 

d d t i 
− 2λi d 

t 
i − 2ρ

[
(d 

t 
i ) 

2 − ‖ x − t i ‖ 2 2 

]
d 

t 
i , i = 1 , . . . , M, (18)

d d s j 
d t 

= 

M ∑ 

i=1 

−d ψ( ̂ r i, j −d t i −d s j ) 

d d s j 
− 2λM+ j d 

s 
j − 2ρ

[
(d 

s 
j ) 

2 − ‖ x − s j ‖ 2 2 

]
d 

s 
j , j = 1 , . . . , L, (19)

d d i, j 

d t 
= −d ψ( ̂  d i, j −d i, j ) 

d d i, j 
− 2λM + L+ M ( j−1)+ i d i, j − 2ρ

(
d 

2 
i, j − ‖ t i − s j ‖ 2 2 

)
d i, j , i = 1 , . . . , M, 
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Table 1 
Typical options for ψ(·) in range-based localization. 

Discrepancy measure ψ(y) Description Parameter Application scenario 

y 2 � 2 — Generally applicable in zero-mean 
Gaussian noise environments 

log (( exp (γ y) + exp (−γ y)) / 2) /γ Smoothed � 1 γ > 0 TDOA-based hyperbolic localization 
[48] 

1 − exp (−y 2 / (2σ 2 
G )) C-loss σG > 0 TOA-based circular localization [49] 

y 2 / (y 2 + ε2 ) GM ε TOA-based circular localization [50] 
log (1 + y 2 /v) Cauchy v > 0 Received signal strength based circular 

localization [51] 

“Correntropy-induced loss” and “Geman-McClure” are abbreviated to “C-loss” and “GM”, respectively. 
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j = 1 , . . . , L, (20)

d λi 

d t 
= (d 

t 
i ) 

2 − ‖ x − t i ‖ 2 2 , i = 1 , . . . , M, (21)

d λM+ j 
d t 

= (d 

s 
j ) 

2 − ‖ x − s j ‖ 2 2 , j = 1 , . . . , L, (22)

d λM + L+ M ( j−1)+ i 
d t 

= d 

2 
i, j − ‖ t i − s j ‖ 2 2 , i = 1 , . . . , M, j = 1 , . . . , L. (23)

ere, Eqs. (16) –(20) are used for minimizing the objective function, whereas Eqs. (21) –
23) ensure that the constraints are satisfied at the equilibrium point. In this case, there are
 M + L + ML + 2 variable neurons to hold the 3 M + L + ML + 2 decision variables and
 + L + ML Lagrangian neurons for the M + L + ML Lagrange multiplier variables. 

.3. Possible objective functions 

This subsection discusses the common choices for the objective function ψ(·) in range-
ased localization, as summarized in Table 1 and depicted in Fig. 2 . 

The l 2 loss ψ(y) = y 2 has been generally used in zero-mean Gaussian noise environments.
owever, it does not work well in the presence of outliers. The l 1 loss ψ(y) = | y| , in com-
arison, will be less affected by the impulsive components as it places a lower emphasis on
arge errors than its l 2 counterpart. Nonetheless, since the l 1 loss is non-differentiable, it is

ore common to utilize a smoothed version of it, namely: 

(y) = 

1 

γ
log 

(
e γ y + e −γ y 

2 

)
, (24)

here γ > 0 is a given constant. For a sufficiently large value of γ , Eq. (24) will well
pproximate the original � 1 loss [36] . 

The correntropy-induced loss (C-loss), Geman-McClure (GM) loss, and the Cauchy loss
re three other typical objective functions to mitigate the negative effects of outliers. Owing
o their close relationship to the redescending M-estimators, these cost functions are known
o have stronger robustness to heavy-tailed large errors. 
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Fig. 2. Comparison of different objective functions. 
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. Stability and complexity analyses 

.1. Local stability 

Stability and convergence are perhaps the two most important facets of a certain neu-
odynamic approach. Due to the nonconvexity of the problem being solved, we are only
ble to investigate the local stability of the LPNN. The local stability ensures that the min-
mum of a constrained optimization problem is a stable point of the neurodynamics, which
lso guarantees the convergence of the network at the minimum point. Specifically, there are
wo sufficient conditions that a minimum point ( y ∗, λ∗) should satisfy to guarantee the local
tability of the LPNN [36,39] : 

(i) ∇ 

2 
y y L ρ ( y ∗, λ∗) � 0 , i.e., the Hessian matrix of the Lagrangian should be positive definite

at ( y ∗, λ∗) . 
(ii) The gradient vectors of the constraints with respect to y are linearly independent at such

a local minimum point. 

The first condition is met by means of the augmented term, as it has been pointed out
39] that the Hessian matrix will be positive definite under mild conditions if ρ is sufficiently
arge. Next, we proceed to analyze the linear independence of the gradient vectors of the
onstraints (taking the 2-D case as an example). 

Let { y ∗, λ∗} 3 be a locally optimal solution of our constrained optimization problem
q. (14) and q i denote the ith constraint in Eq. (14) . In this way, we obtain the follow-

ng M + L + ML rearranged equations: 

 m 

( y ) = (d 

t 
m 

) 2 − ‖ x − t m 

‖ 2 2 , (25)

 M+ l ( y ) = (d 

s ) 2 − ‖ x − s l ‖ 2 , (26)
l 2 

3 For notational convenience, we assume that the asterisk applies to every element of the corresponding vector by 
efault. 
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i  
 M+ L+(m−1) l+ l ( y ) = (d m,l ) 
2 − ‖ t m 

− s l ‖ 2 2 , (27)

here m = 1 , . . . , M and l = 1 , . . . , L. The gradient vectors for Eqs. (25) –(27) at y ∗ are 

∂q m 

( y ) 
∂ y 

∣∣∣∣y = y ∗

= 2[ −( x 

∗ − t m 

) T , 0 1 ×2(m−1) , ( x − t ∗m 

) T , 0 1 ×2(M−m) , 0 1 ×(m−1) , d 

t∗
m 

, 0 1 ×(M−m) , 

0 1 ×L , 0 1 ×ML ] 
T , 

m = 1 , ..., M, (28)

∂q M+ l ( y ) 
∂ y 

∣∣∣∣y = y ∗

= 2 [ − ( x 

∗ − s l ) T , 0 1 ×2M 

, 0 1 ×M 

, 0 1 ×(l−1) , d 

s∗
l , 0 1 ×(L−l ) , 0 1 ×ML ] T , 

l = 1 , . . . , L, (29)

∂q M+ L+(m−1) l+ l ( y ) 
∂ y 

∣∣∣∣y = y ∗

= 2[ 0 1 ×2 , 0 1 ×2(m−1) , −( t ∗m 

− s l ) T , 0 1 ×2(M−m) , 0 1 ×M 

, 0 1 ×L , 0 1 ×(m−1) l + l −1) , 

d 

∗
m,l , 0 1 ×(ML−(m−1) l −l ) ] 

T , 

m = 1 , . . . , M, l = 1 , . . . , L. (30)

n Eq. (31) , we provide a clearer illustration in terms of the gradient matrix. [
∂q 1 ( y ∗ ) 

∂ y 
, ..., 

∂q M ( y ∗ ) 

∂ y 
, 

∂q M+1 ( y ∗ ) 

∂ y 
, ..., 

∂q M+ L ( y ∗ ) 

∂ y 
, 

∂q M+ L+1 ( y ∗ ) 

∂ y 
, ..., 

∂q M + L+ M L ( y ∗ ) 

∂ y 

]

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−2 [ x ∗ − t 1 , ..., x ∗ − t M ] −2 [ x ∗ − s 1 , ..., x ∗ − s L ] 0 2×ML 

2 blkdiag ( x − t ∗1 , ..., x − t ∗M ) 0 2M×L −2 blkdiag ( t ∗1 − s 1 , ..., t ∗1 − s L , t ∗2 − s 1 , ..., t ∗M − s L ) 
2 diag (d t∗1 , ..., d 

t∗
M ) 0 M×L 0 M ×M L 

0 L×M 2 diag (d s 1 ∗, ..., d s L ∗) 0 L×ML 

0 ML×M 0 ML×L 2 diag (d ∗1 , 1 , ..., d 
∗
1 ,L , d 

∗
2, 1 , ..., d 

∗
M,L ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(31)

In general, we can consider that the transmitter and receiver positions are different from
he target position, which implies that none of d 

t∗
m 

, d 

s∗
l and d 

∗
m,l are equal to 0. Hence, the

radient matrix in Eq. (31) is linear independent (viz., the gradient vectors of the constraints
n Eq. (14) are linearly independent) at y = y ∗. Combining these two conditions, we deduce
hat the dynamics of the LPNN for solving Eq. (14) are stable at a local minimum point. 

.2. Implementation complexity 

The LPNN was originally designed to be an analog computational technique [39] . Nonethe-
ess, it can also be implemented numerically either by using an ordinary differential equa-
ion (ODE) solver [34] or by assigning a certain user-defined step size [22] . Here, we take
he former way for realizing our LPNN approach. For this reason, measuring only its circuit
omplexity may not be the appropriate way to characterize the complexity of the overall
ethodology. 
The computational cost of the numerical implementation of LPNN, on the other

and, is dominated by that of the neurodynamic operations at each iteration. Involv-
ng mostly derivative calculations, our LPNN has linear computational complexity of
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((H + 2)) M + 2L + 2ML + H ) . By comparison, the existing approach [26] built upon con-
ex relaxation requires O((3 M + 2)((M + 1) H + 3 M + 2) 3 . 5 ) . In Section 5 , we will also
how the CPU times of different methods to give a more intuitive comparison. 

. Numerical results 

This section evaluates the proposed algorithm in different PEP scenarios based on both
andom synthetic and real experimental data. Comparisons are made to the existing SDP
ethod [26] for tackling Eq. (6) , and the benchmarking estimator Eq. (3) implemented us-

ng the perfectly initialized MATLAB command for unconstrained minimization, fminunc .
he two competitors and our LPNN algorithm are termed SDP , MLE , and L- ∗∗∗ for short,

espectively, where the asterisks “∗∗∗” will be substituted with the name of the correspond-
ng loss in particular scenarios. The parameters used in SDP are the same as in the original
iterature. For the LPNN-type location estimators, based on our practical experience, we set
he parameters in Table 1 as γ = 50, σG 

= 5 , ε = 20, and v = 10 for better stability and
onvergence speed. Based on the observation in [36] and our experience, the coefficient of
he augmented term is fixed as ρ = 20 to guarantee that equilibrium can be attained in a
table and efficient manner. In our simulations, varying the value of ρ within an appropriate
ange demonstrated only a tiny amount of influence on the convergence rate. The initial val-
es of the variables x , t i (for i = 1 , . . . , M), d 

t 
i (for i = 1 , . . . , M), d 

r 
j (for j = 1 , . . . , L), d i, j

for i = 1 , . . . , M, j = 1 , . . . , L), and λ = [ λ1 , . . . , λM + L+ M L ] T are all randomly generated.
or simplicity, we only consider the case of H = 2 as the results of H = 3 are in general
imilar. The SDP program and ODEs are handled using the MATLAB CVX package [52] and
de15s solver [46] , respectively. 

To assess the positioning accuracy, we use the root-mean-square error (RMSE), defined as

MSE = 

√ √ √ √ √ 

1 

N MC 

N MC ∑ 

j=1 

‖ ̃  x 

{ j} − x 

{ j} ‖ 2 2 , (32)

here N MC 

denotes the number of Monte Carlo (MC) runs (fixed as N MC 

= 200 in our
ests unless otherwise specified), and ˜ x 

{ j} is the estimate of the true target location x 

{ j} in the
jth MC run. 

.1. Results of random synthetic data 

For simulation purposes, we use the Gaussian mixture model (GMM) to take into account
he possible occurrence of outliers [34,53] . Specifically, δm,l and εm,l in Eqs. (1) and (2) are
odeled as a two-component bivariate Gaussian mixture distribution, with the probability

ensity function: 

p 

(
e m,l | βm,l , μm,l , ̃  μm,l , σm,l , ̃  σm,l 

) = 

βm,l 

σm,l 

√ 

2π
exp 

[
−1 

2 

(
e m,l − μm,l 

σm,l 

)
2 

]

+ 

(1 − βm,l ) ˜ σm,l 

√ 

2π
exp 

[
−1 

2 

(
e m,l − ˜ μm,l ˜ σm,l 

)
2 

]
, (33)
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Fig. 3. Geometry of sensors and target. 
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here e m,l is the random variable being modeled, βm,l the mixture weight, μm,l the mean of
he first GMM component, ˜ μm,l the mean of the second GMM component, and σm,l and ˜ σm,l 

he standard deviations of the first and second GMM components, respectively. 
Consider a deterministically deployed PEP system with four transmitters and six re-

eivers, namely, M = 4 and L = 6 . The sensor positions are t 1 = [ −200, −300] T m, t 2 =
 −200, 300] T m, t 3 = [200, 300] T m, t 4 = [200, −300] T m, s 1 = [ −450, −450] T m, s 2 =
450, 450] T m, s 3 = [0, 600] T m, s 4 = [600, 0] T m, s 5 = [ −600, 0] T m, and s 6 = [0, 600] T 

, whereas the target is located at x = [400, 800] T m. Fig. 3 shows the geometry of the target
nd sensors. 

In the first experiment, the RMSE performance of different PEP techniques in pure Gaus-
ian noise environments (viz., without any outliers) is studied. The measurement errors are
odeled as independent and identically distributed two-component Gaussian mixture processes
ith β = 1 , μ = 0, ˜ μ = 0, and ˜ σ = 0. We vary σ from 10 m to 50 m and plot the RMSE in
ig. 4 . It can be observed that L-Closs , L-GM , and L-Cauchy have the best performance and
eliver comparable RMSE results to MLE . A possible reason is the shape resemblance between
he corresponding robust cost functions and the � 2 loss in small error regions (see Fig. 2 ).
he L-smoothed- l 1 estimator performs slightly worse but still better than the SDP approach.
his confirms the effectiveness of our LPNN method in Gaussian noise environments. 

In the second experiment, we simulate the mild NLOS environment with one transmitter
ubject to outliers. All the range measurements associated with it are affected by NLOS er-
ors that follow the Gaussian mixture distributions with β = 0. 5 , μ = 0, ˜ μ = 20, and σ = 1 ,
hereas the rest are under Gaussian noise of unit standard deviation. The RMSE results
f varying ˜ σ from 0 m to 10 m are shown in Fig. 5 . We see that L-smoothed- l 1 demon-
trates excellent robustness against the presence of sporadic NLOS outliers, and the RMSE
lmost remains unchanged as ˜ σ grows. L-Closs , L-GM and L-Cauchy have similar RMSE
erformance to MLE and are slightly better than SDP when ˜ σ is not large enough. 

Finally, we evaluate the performance of our proposal in an environment with a large number
f outliers, where the Gaussian mixture errors are added to the BR and direct range measure-
ents for every transmitter-receiver pair. This may be regarded as a generally contaminated
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Fig. 4. RMSE versus σ in Gaussian noise environment. 

Fig. 5. RMSE versus ̃  σ in mild NLOS environment. In this experiment, one transmitter is subject to NLOS propa- 
gation. 
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o  

o  

i  

c
 

L

evere NLOS scenario. The GMM-related parameters are kept the same as in the last exper-
ment. The results are shown in Fig. 6 . We observe that in the presence of a large number
f outliers, the robustness of L-smoothed- l 1 decreases. Nevertheless, it is still capable of
utperforming SDP for the whole range under investigation and the other approaches when σ̃

s a larger number. The remaining three objective functions, in contrast, lead to performance
omparable to MLE and better than SDP . 

In summary, our proposed algorithms are superior to SDP in various situations. Especially,
-smoothed- l shows excellent robustness in the mild NLOS environment. 
1 
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Fig. 6. RMSE versus ̃  σ in severe NLOS environment. In this experiment, all transmitters and receivers are subject 
to NLOS propagation. 
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.2. Results of real experimental data 

In addition to computer simulations, onsite PEP experiments were carried out by employing
n acoustic localization system. It is composed of multiple spatially separated sound-making
peakers and a Huawei Mate 20 signal-receiving device with Android 10.0 system, Hisilicon
irin 980 CPU, and 4 GB memory (i.e., a middle-level configuration commercial off-the-shelf

martphone). We modulated the chirp signals, whose frequencies were sweeping from 19 kHz
o 21 kHz, to estimate the TOA-based speaker-smartphone distances using the well-known
eneralized cross correlation algorithm [54] . We conducted ranging N MC 

= 40 times for
ach path. To introduce NLOS errors into a certain communication channel, we positioned an
xperimenter on the associated transmission path, acting as a barrier and deliberately obstruct-
ng the signal. With the obtained speaker-smartphone distance observations, we constructed
heir BR and direct range counterparts for our purpose of PEP performance evaluation. 

For simplicity, the smartphone (taking the role of the target to be localized) was al-
ays placed at the frame’s origin (i.e., x = [0, 0] T m). The PEP system under test that
e constructed consists of one transmitter and four receivers, whose ground-truth posi-

ions t 1 = [4, 0] T m, s 1 = [1 . 375 , 1 . 452] T m, s 2 = [2. 625 , 1 . 452] T m, s 3 = [5 , 0] T m, and
 4 = [1 . 375 , −1 . 452] T m were measured via a laser range finder. Fig. 7 depicts the geometric
etting. 

Invoking the MATLAB routine fitdist , Gaussian mixture distributions were fitted to the
ample data according to Eqs. (1) and (2) . Table 2 summarizes the details. We see that the x –
 3 path is subject to NLOS propagation, whereas the others are all under lower-level Gaussian
isturbances. 

We then input these range data to different PEP estimators for estimating x . To better align
ith the smaller scale ranges in the real experiments, the parameters in Table 1 were reset

s γ = 1 , σG 

= 5 , ε = 5 , and v = 10. Table 3 reports the results of RMSE and average CPU
ime for L-smoothed- l 1 , L-Closs , L-GM , L-Cauchy , and SDP . We see that compared to SDP ,
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Fig. 7. Geometry of sensors in onsite experiment. 

Table 2 
Characteristics of Gaussian mixture distributions. 

Path β μ ˜ μ σ ˜ σ

t 1 − x 0.495 −0. 028 0.015 5 . 21 × 10 −4 5 . 8 × 10 −4 

x − s 1 0.417 −0. 018 −0. 047 7 . 98 × 10 −4 4. 68 × 10 −4 

x − s 2 0.553 −0. 036 0.009 3 . 68 × 10 −4 7 . 81 × 10 −4 

x − s 3 0.900 0.442 1.795 0.1003 0.0119 
x − s 4 0.422 −0. 027 −0. 043 7 . 31 × 10 −4 4. 66 × 10 −4 

t 1 − s 1 0.525 −0. 008 −0. 018 8 . 18 × 10 −4 0 
t 1 − s 2 0.150 −0. 001 −0. 04 6 . 13 × 10 −5 2. 24 × 10 −4 

t 1 − s 3 0.539 −0. 046 −0. 007 3 . 57 × 10 −4 9 . 33 × 10 −4 

t 1 − s 4 0.713 −0. 019 −0. 041 0.001 3 . 24 × 10 −5 

Table 3 
Performance of different PEP methods in real experiments. 

Algorithm RMSE (m) Average CPU time (s) 

L-smoothed- l 1 0.1280 0.0862 
L-C-loss 0.1484 0.1824 
L-GM 0.1436 0.1718 
L-Cauchy 0.1423 0.1240 
SDP 0.3818 0.3434 

t  

i

6

 

l  

t  
he four proposed approaches take less time and yield more accurate location estimates. This
s consistent with the analyses and simulation results above. 

. Conclusion 

In this contribution, we have studied the problem of robust PEP with unknown transmitter
ocations. Our proposal is based on the neurodynamic approach of LPNN, and we adopt a sta-
istically robustified differentiable objective function in order to reduce the impact of outliers.
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s∣∣∣  
urthermore, we have analyzed the local stability of the neural model and the implementation
omplexity of the proposed LPNN-based algorithms. Through both numerical simulations and
coustic localization experiments, it is demonstrated that our LPNN scheme is superior to the
tate-of-the-art SDP method in terms of outlier-robustness and computational efficiency. 

Fixed-parameter objective functions were observed to behave differently at different noise
evels, implying that the choice of the objective function parameters can also be crucial. One
f the possible future research directions is the adaptive selection of such parameters. 
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ppendix. 

In the following, we show that the inequality constraints in Eq. (12) are all removable. 
Let us denote the optimal solution of Eqs. (12) by y ∗ = [ x 

∗T , t ∗T 
1 , . . . , t ∗T 

M 

,

 

t∗
1 , . . . , d 

t∗
M 

, d 

s∗
1 , . . . , d 

s∗
L d 

∗
1 , 1 , . . . , d 

∗
M, 1 , d 

∗
1 , 2 , . . . , d 

∗
M,L ] 

T . It follows straightforwardly from
qs. (12a) –(12c) that [ x 

∗T , | t ∗T 
1 | , . . . , | t ∗T 

M 

| , | d 

t∗
1 | , . . . , | d 

t∗
M 

| , | d 

s∗
1 | , . . . , | d 

s∗
L | , | d 

∗
1 , 1 | , . . . , | d 

∗
M, 1 | , | d

 . . , | d 

∗
M,L | ] T is a feasible solution. On the other hand, by definition we have

ˆ  m,l ≥ 0, ˆ d m,l ≥ 0, d 

t 
m 

≥ 0, d 

s 
l ≥ 0, and d m,l ≥ 0, based on which the mild assumption that

ˆ  m,l ≥ d 

t∗
m 

and ˆ r m,l ≥ d 

s∗
l can be fulfilled in the majority of cases of practical significance. 

We start our analysis from the direct path components, the case of which may be relatively
impler. For Eq. (12f) , we consider the following reverse triangle inequality: 

ˆ d m,l − d 

∗
m,l 

∣∣∣ ≥
∣∣∣ ˆ d m,l − | d 

∗
m,l | 

∣∣∣ (A.1)
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[
[  
bviously, d 

∗
m,l will no longer be the optimal solution if the inequality holds strictly. In other

ords, ≥ in Eq. (A.1) degrades into = , which means d 

∗
m,l = | d 

∗
m,l | ∀ m, l . Therefore, the

nequality constraints in Eq. (12f) can be discarded. 
The inequality for the indirect path, in a similar manner, is constructed as 

ˆ r m,l − d 

t∗
m 

− d 

s∗
l 

∣∣ ≥ ∣∣ ˆ r m,l − | d 

t∗
m 

| − | d 

s∗
l | ∣∣. (A.2)

owever, this time we would need to validate Eq. (A.2) before making use of it in our
iscussion of optimality. To do so, we calculate the squared distance for the two associated
erms as 

 = 

∣∣ ˆ r m,l − d 

t∗
m 

− d 

s∗
l 

∣∣2 − ∣∣ ˆ r m,l − | d 

t∗
m 

| − | d 

s∗
l | ∣∣2 = 2 ̂  r m,l 

(| d 

t∗
m 

| + | d 

s∗
l | − d 

t∗
m 

− d 

s∗
l 

)
+ 2 

(
d 

t∗
m 

d 

s∗
l − | d 

t∗
m 

|| d 

s∗
l | ). (A.3)

t can be easily obtained that no matter whether d 

t∗
m 

and d 

s∗
l take positive or negative values,

 ≥ 0 holds. For the same justification as above, it follows that d 

t∗
m 

= | d 

t∗
m 

| ∀ m ∈ { 1 , . . . , M}
nd d 

s∗
l = | d 

s∗
l | ∀ l ∈ { 1 , . . . , L} . That is to say, we also remove the inequality constraints in

qs. (12d) and (12e) . 
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