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Abstract— From the feature representation’s point of view, the feature
learning module of a convolutional neural network (CNN) is to transform
an input pattern into a feature vector. This feature vector is then
multiplied with a number of output weight vectors to produce softmax
scores. The common training objective in CNNs is based on the softmax
loss, which ignores the intra-class compactness. This brief proposes a
constrained center loss (CCL)-based algorithm to extract robust features.
The training objective of a CNN consists of two terms, softmax loss and
CCL. The aim of the softmax loss is to push the feature vectors from
different classes apart. Meanwhile, the CCL aims at clustering the feature
vectors such that the feature vectors from the same classes are close
together. Instead of using stochastic gradient descent (SGD) algorithms to
learn all the connection weights and the cluster centers at the same time.
Our CCL-based algorithm is based on the alternative learning strategy.
We first fix the connection weights of the CNN and update the cluster
centers based on an analytical formula, which can be implemented based
on the minibatch concept. We then fix the cluster centers and update the
connection weights for a number of SGD minibatch iterations. We also
propose a simplified CCL (SCCL) algorithm. Experiments are performed
on six commonly used benchmark datasets. The results demonstrate
that the two proposed algorithms outperform several state-of-the-art
approaches.

Index Terms— Center loss (CL), constrained center loss (CCL),
convolutional neural networks (CNNs), image classification.

NOMENCLATURE

Symbol Definition
xxx Input of a CNN.
xxxi i th training sample.
yi ∈ {1, . . . , C} Class label of the i th training sample.
� Collection of weights of the feature learning

module of a CNN.
fff ∈ R

d Feature vector. This is the outputs of the feature
learning module of a CNN. Note that fff depends
on � and xxx .

d Number of features (size of feature vector).
fff i Feature vector for the i th training sample. Note

that fff i depends on � and xxxi .
wwwk Output weight for the kth class.
ccck Feature center for the kth class.

I. INTRODUCTION

In pattern recognition, learning compact and separable features are
crucial to improve the classification rate [1]–[6]. Over the years, many
schemes were proposed for feature learning, such as linear discrimi-
nant analysis (LDA) [3], [4] and neural network (NN) [5], [6]. Those
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algorithms map the high-dimension input data on a low-dimensional
space and thereby improve the computation efficiency. In addition,
the intrinsic structure of the data is revealed. Hence, the resultant
abstract features boost the classification accuracy. The classical LDA
approach is to maximize the ratio of the between-class scatter and the
within-class scatter. In the classical LDA for image data, images must
be converted to vector form. Hence, some image spatial information
may be lost and the computational complexity is high [4]. Therefore,
some LDA works were proposed by directly handling images in
matrix form, including the compound rank-k projection method [4]
and convolutional 2-D nonlinear discriminant analysis method [7].

The convolutional neural network (CNN) model is a representative
method for multiple levels of representations [8]–[13]. Unlike LDA,
the success of the CNN model is beneficial from the utilization of
spatial relationship of images. In CNN, the feature learning module is
to transform an input pattern into a feature vector (deep features). This
feature vector is then multiplied with a number of output weight vec-
tors, each of which corresponds to a class. The classification process
is then based on the softmax decision. By stacking more layers in
a CNN, better robust features can be extracted. Representative CNN
methods are stacked autoencoders [14], [15] and ResNet [16].

The softmax loss concept bundled with deep structures is popular
in supervised learning [16]–[19]. It has two roles. First, it acts as
classifier [20]. Second, it enlarges magnitudes of the features to boost
its performance. This is because softmax can be considered as a
softened max operator [21]. Hence, the deep features are pulled to
fill the whole feature space [22]. However, the feature magnitudes of
all classes are not magnified equally and the feature vectors from the
same class would have imbalanced magnitudes [20], [23].

The extracted deep features of a trained CNN are expected to have
high intra-similarity and low inter-similarity [20], [22], [24]–[27].
Unfortunately, raw data often suffer from low intra-class and rela-
tively high inter-class similarity [10]–[13], [28]. To learn discrimina-
tive features, an alternative is metric learning [29]–[33]. The center
loss (CL) algorithm and its variants [20], [23], [24], [34] aim at push-
ing the feature vectors from the same class together around a learn-
able class center. From prototype learning [35]–[37], the centers can
be viewed as prototypes. Nevertheless, the update rules for centers in
CL [20] prevent the learning of prototypes directly from data [35].
Besides, CL may lead to training instability [24]. To be more general
than CL, the convolutional prototype learning (CPL) utilizes the
distance-based cross-entropy loss (DCE) to learn the prototypes auto-
matically from data [35]. To avoid overfitting, the DCE is equipped
with the prototype loss (PL), leading to generalized convolutional
prototype learning (GCPL) [35]. The combination of CNN and
GCPL is also a case of convolutional prototype network (CPN) [36].
The linear combination of the classification loss (softmax/DCE) and
distance-based penalization (CL/PL) gives a new perspective to learn
robust features. The purpose of classification loss is to separate the
features across classes, while the distance-based penalization aims
at reducing the intra-class variance. In this way, both the intra-class
compactness and inter-class separability can be improved. Compared
to CL, GCPL completely relies on distance-based representation
learning. It is noteworthy that GCPL becomes a linear classifier when
the features and prototypes are normalized [37]. In this situation,
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GCPL focuses on maximizing the cosine similarity between feature
vectors and their corresponding prototypes.

Another pipeline is to enhance the cosine similarity between the
feature vectors and the class weight vectors [21], [22], [26], [38], [39].
One approach is to perform the �2-normalization on feature vectors.
It aims at eliminating the influence of imbalanced magnitudes.
By adopting the �2-normalization, these algorithms integrate the
ability to learn compact representations into softmax loss. Hence, one
can explicitly reduce correlations among softmax weights and thereby
increases the separation. Many frameworks, such as orthogonality
constraint loss (OCL) [24], uniform loss [40] and others [41], are
of this type. The OCL aims at orthogonalizing the softmax weights,
whereas the uniform loss aims at pushing the weights to be eventually
distributed. However, the �2-normalization in [22] and [26] only
utilizes the unit direction of feature vectors. It does not normalize the
feature vectors. The feature magnitudes still have large variation [22],
[38], [39], [42]. This indicates that intra-class compactness still needs
to be enhanced. The �2-normalization algorithms may introduce some
normalization factors in the objective function and the computation
of the gradient vector becomes complicated.

This brief proposes a constrained center loss (CCL)-based algo-
rithm to improve intra-class similarity. In our algorithm, the CNN
is jointly supervised by the softmax loss and CCL. The softmax
loss aims at pushing the feature vectors from different classes apart,
while the CCL aims at clustering the feature vectors from the same
class together. Our algorithm uses the alternative training strategy that
contains two steps. In the first step, we fix all the connection weights
of the CNN and compute the class centers using all the samples. It is
noteworthy that the center estimation step can be performed based on
the minibatch concept. Afterward, we fix the class centers and then
optimize other parameters based on the SGD concept for a number of
minibatch iterations. The alternative procedure is repeatedly applied
until all the estimation parameters converge. In addition, a simplified
algorithm, namely simplified CCL (SCCL), is presented. Unlike
some existing algorithms which involve normalization factors in
the objective function, our algorithms remove some normalization
factors. Compared to some state-of-the-art approaches, the proposed
algorithms provide better performance on several benchmark datasets.

The rest of this brief is arranged as follows. Section II presents
the backgrounds on feature representation, softmax loss, and CL. The
proposed CLL and the SCCL algorithms are given in Section III.
Section IV includes the experimental results. Finally, conclusions are
presented in Section V.

II. BACKGROUND

A. Feature Representation of CNN

Nomenclature summarizes the key notations in this brief. Other
mathematical symbols are defined in their first appearances. Fig. 1
shows the feature representation concept. The feature learning module
consists of a number of convolutional layers, a number of pooling
layers, and a few fully connected layers. Let � be the collection
of all weights in the feature learning module. The output layer is
a fully connected layer. It consists of a number of output weight
vectors, {www1, . . . ,wwwC }, where C is the number of classes, wwwk ∈ R

d ,
and k = 1, . . . , C . The feature learning module transforms an input
pattern xxx ∈ R

D (it may be a color image), to a feature vector fff ∈ R
d .

The feature vector is multiplied with the output weight vectors. The
classification is then based on the softmax decision.

B. Softmax Loss

This brief considers that the training set contains N labeled pairs,
given by D = {{xxxi , yi}N

i=1}, where xxxi is the i th training sample, its

Fig. 1. Structure of a CNN.

class label is denoted as yi ∈ {1, . . . , C}, and C is the number of
classes. Given the i th sample xxxi , the output of the feature learning
module is the corresponding feature vector, denoted by fff i .

Given an input xxx , the CNN gives out the output softmax scores

pk� = ek�∑C
k=1 ek

= exp
(
wwwT

k� fff + bk�
)

∑C
k=1 exp

(
wwwT

k fff + bk

) (1)

for k � = 1, . . . , C , where wwwk ∈ R
d is the output weight vector for

the kth class and bk is the bias for the kth class.
For simplicity, we assume that all bk ’s equal 0. Given a training

input xxxi , its class label is denoted as yi and the corresponding output
weight vector for class yi is denoted as wwwyi . The softmax loss is
written as

Lsoftmax = −
N∑

i=1

log
exp

(
wwwT

yi
fff i

)
∑C

k=1 exp
(
wwwT

k fff i

) . (2)

Also, we consider that the SGD with the minibatch concept is used
to estimate all the weights of the CNN, including the weights of the
feature learning module and the output weight vectors.

C. Softmax Loss Algorithms and Center Loss

The �2-normalization aims at reducing the variation in feature
magnitudes. In [38], the optimization problem is given by

min
wwwk ,�

Lsoftmax, s.t. � fff i� = α ∀i = 1, . . . , N (3)

where α is a positive constant. The constrained optimization stated
in (3) is difficult to solve because the feature vectors are functions
of the connection weights of the feature learning module.

To avoid solving the highly nonlinear constrained optimization
problem, stated in (3), the following normalization process is used.
We feed the normalized feature vectors fff i/� fff i�’s to the output
layer and scale them by α. The whole normalization process gives
out (α fff i/� fff i�). It should be noted that the above normalization
process does not really normalize the feature vectors [22], [38], [39].
With the feature normalization process, the problem [38] becomes an
unconstrained optimization problem

min
wwwk ,�

−
N∑

i=1

log
exp

(
αwwwT

yi

fff i

� fff i�
)

∑C
k=1 exp

(
αwwwT

k

fff i

� fff i�
) . (4)

The congenerous cosine loss (COCO) algorithm [22] and the von
Mises–Fisher loss (vMF-A) algorithm [26] consider the normalization
process on both the feature vectors and output weight vectors. Both
the COCO and vMF-A algorithms aim at solving the following
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Fig. 2. Visualization of feature distribution and compactness learned by
various algorithms on test set. The classes are distinguished by different colors.
(a) Software. (b) COCO [22]. (c) OCL [24]. (d) vMF-A [26]. (e) GCPL [35].
(f) CL [20]. (g) CCL. (h) SCCL.

unconstrained optimization problem:

min
wwwk ,�

−
N∑

i=1

log

exp

(
α

wwwT
yi

fff i

�wwwyi �� fff i�

)

∑C
k=1 exp

(
α

wwwT
k fff i

�wwwk�� fff i�
) . (5)

Again, as shown in Fig. 2, both the COCO and vMF-A algorithms
do not really normalize the feature vectors. In the COCO and vMF-A
algorithms, α is set to a constant, and the minibatch SGD learning is
utilized to optimize the connection weights � of the feature learning
module. The main difference between COCO and vMF-A is that
COCO optimizes the output weight vectors wwwk’s by the minibatch
concept, while vMF-A uses the batch model concept to update wwwk ’s.

Since we have some normalization terms in (5), the gradient vector
of the objective function has some terms with the factors (1/�wwwk�)’s
and (1/� fff i�)’s. This issue may lead to some computational problems
when �wwwk�’s and � fff i�’s are close to zero. Also, since fff i ’s are
functions of the connection weights � of the feature learning module,
the computation of the gradient vectors becomes complicated.

The CL approach [20] enhances the compactness of the feature
vectors from the same class by penalizing the distances between the
feature vectors and their centers. The CL is defined as

Lintra = 1

2N

N∑
i=1

∥∥ fff i − cccyi

∥∥2
(6)

where fff i is the feature vector of the i th sample, yi is the class label
of the i th sample, and cccyi ∈ R

d is its class center.
The CL approach considers the following objective function:

L = Lsoftmax + λLintra (7)

where λ > 0 is the tradeoff parameter. In the CL approach, all the
parameters are optimized by the SGD approach with the minibatch
concept [20], [43].

III. CONSTRAINED CENTER LOSS AND JOINT SUPERVISION

Our models aim at learning a mapping that projects the inputs onto
a deep feature space. In the feature space, the feature vectors should
have high intra-class compactness and inter-class separability. In the
following, we present our proposed algorithms.

A. Constrained Center Loss
Intra-class compactness [20] and feature normalization [22] can

improve classification rate. In our formulation, we utilize both of
them. To enhance the intra-class similarity, we consider the following
optimization problem:

min
�

Lintra, s.t.
∥∥ fff i

∥∥ = α, i = 1, . . . , N (8)

where

Lintra = 1

2N

N∑
i=1

N∑
i� �=i

δ(yi , yi� )
∥∥ fff i − fff i�

∥∥2
. (9)

α is a positive constant and δ(yi , yi� ) is an indicator function. If yi =
yi� , then δ(yi , yi� ) = 1. Otherwise, δ(yi , yi� ) = 0.

Even we use the minibatch concept with m samples in a minibatch,
the complexity of computing the loss in (8) grows quadratically as the
batch size m increases [22]. For example, we assume that each class
consists of m/C samples in a minibatch. Hence, the total number of
possible pairs is (m2 − mC/2C). Also, such loss stated in (8) results
in slow convergence and training instability [19], [22], [39].

Inspired by CL [20], we introduce a class center for each class.
Here, a class center can be viewed as the representative feature
vector for a class. By using the class center concept, our formulation
circumvents the difficulty of preparing the data pair. Instead of using
hard constraints on the magnitudes of feature vectors, we consider
the following constrained optimization task:

min
ccck ,�

1

2N

N∑
i=1

∥∥ fff i − cccyi

∥∥2
(10a)

s.t. �ccck� = α, k = 1, . . . , C. (10b)

We call the loss in (10) as CCL. The term � fff i − cccyi �2 is distance
between the feature vector fff i of the input pattern xxxi and the center
vector cccyi . By penalizing the distances (1/2N)

∑N
i=1 � fff i −cccyi �2, the

feature vectors are pulled close to their corresponding centers [20],
[35], [36]. In addition, we introduce constraints on the magnitudes of
the center vectors. Hence, the feature vectors are softly normalized.
When the training is finished, the magnitudes of feature vectors are
roughly equal to α. In this way, we do not need to normalize the
feature vectors by the �2-normalization process.

When fff i ’s and � are fixed, based on the Lagrange multiplier
method, the class center for the kth class can be updated from the
following equation:

ccck = α

∑N
i=1 δ(k, yi) fff i∥∥∥∑N
i=1 δ(k, yi) fff i

∥∥∥ (11)

where k = 1, . . . , C and δ(k, yi) is an indicator function. If yi = k,
then δ(k, yi) = 1. Otherwise, δ(k, yi) = 0. The derivation details
of (11) can be found in Appendix I.

B. CCL Algorithm
We combine the CCL with the softmax loss Lsoftmax to formulate a

joint supervision loss. Weight normalization in Lsoftmax is beneficial to
maintain better angular classification margins among multiple classes.
Hence, we assume that wwwk ’s are normalized to obtain a better angular
margin across classes. It should be noticed that the feature vectors do
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Algorithm 1 CCL Approach
1: repeat
2: Fix all the connection weights of the CNN, and update centers

{ccck} according to (11).
3: Fix centers, and train the CNN with SGD based on (13) for l

minbatch presentations.
4: until convergence

not need to be normalized because the constrained loss given by (10)
forces the magnitude of the feature vectors to be around α. Our joint
supervision problem is given by

min
wwwk ,ccck ,�

−
N∑

i=1

log

exp

(
wwwT

yi
fff i∥∥wwwyi

∥∥
)

∑C
k=1 exp

(
wwwT

k fff i

�wwwk�
) + λ

2N

N∑
i=1

∥∥ fff i − cccyi

∥∥2
(12a)

s.t. �ccck� = α, k = 1, . . . , C (12b)

where λ > 0 is the tradeoff parameter that balances the importance
of Lsoftmax and Lintra.

In (12), there are three sets of parameters: the class centers
ccck’s, the connection weights � of the feature learning module, and
the output weight vectors wwwk ’s. We use the alternative strategy to
optimize (12).

The alternative training process includes two steps and is repeated
until the predefined termination condition reaches. Our approach is
called the CCL algorithm. The first step updates the centers, whereas
the second step updates the connection weights � of the feature
learning module and the output weight vectors wwwk’s. We summarize
the CCL approach in Algorithm 1.

1) Update the Centers: In the first step, we fix the connection
weights � of the feature learning module and the output weight
vectors wwwk ’s. When all the connection weights of the CNN are fixed,
a better idea is to seize the global distribution of the deep features by
using the entire training samples. Hence, we can use (11) to update
the centers. Note that in (11), the computation of the summation
term can be implemented in a minibatch like manner. Specifically,
we feed the minibatches to the network in a one-by-one manner and
then compute the summation in the accumulated manner.

2) SGD Step: Update all the Connection Weights of CNN: In
the second step, the centers are fixed and we update all the connection
weights of the CNN based on the SGD concept. For the current
minibatch, the loss is given by

L = −
m∑

j=1

log

exp

(
wwwT

y j
fff j∥∥wwwy j

∥∥
)

∑C
k=1 exp

(
wwwT

k fff j

�wwwk�

) + λ

2m

m∑
j=1

∥∥ fff j − cccy j

∥∥2
. (13)

In this SGD step, we use the minibatch concept to minimize L by
updating the connection weights � and wwwk ’s. The SGD algorithm is
run for l training minibatch iterations. Since L is differentiable, � and
wwwk’s can be optimized by the minibatch SGD approach efficiently.

In the CCL algorithm, there are no the normalization factors,
(1/� fff j�)’s, in the objective function. However, the loss still has the
normalization terms (1/�wwwk�)’s but wwwk’s are not functions of the
connection weights � of the feature learning module.

C. Simplification of CCL
In the CCL algorithm, although one group of normalization factors

is removed, the objective function still has the normalization factors:
(1/�wwwk�)’s. The CCL algorithm forces fff i ’s to be close to both

Algorithm 2 Simplified CCL Approach
1: repeat
2: Fix the connection weights of the CNN, and update centers {ccck}

according to (11).
3: Scale {ccck} with 1

α
to obtain the output weight vectors according

to (14).
4: Fix the centers and output weight vectors, train CNN via the

joint supervision (15) for l minbatch presentations.
5: until convergence

wwwyi ’s and cccyi ’s in the angular distance manner. This indicates that
wwwyi and cccyi may have similar direction [21], [22]. Consequently,
the coexistence of the classifiers and class centers in the CCL
algorithm may result in some parameter redundancy.

To simplify the CCL algorithm, we propose the SCCL, in which
the normalization factors, (1/�wwwk�)’s, are also removed. We use the
directions of centers ccck’s as the output weight vectors wwwk ’s. The first
step of the SCCL is the same as that of the CCL, that is, we update
ccck ’s according to (11).

Afterward, the output weight vectors are obtained from ccck’s by
scaling a factor of (1/α). Therefore, the output weight vector wwwk of
the kth class is reduced to an unit direction, written as

wwwk = ccck

α
=

∑N
i=1 δ(k, yi) fff i∥∥∥∑N
i=1 δ(k, yi) fff i

∥∥∥ , k = 1, . . . , C. (14)

With this simplification, C × d parameters, i.e., the {wwwk}C
k=1 ∈ R

d ,
are saved. Moreover, there is no normalization factor in the objective
function of the SGD step.

Finally, the objective for the SGD step is

−
m∑

j=1

log
exp

(
1
α

cccT
y j

fff j

)
∑C

k=1 exp
(

1
α

cccT
k fff j

) + λ

2m

m∑
j=1

∥∥ fff j − cccy j

∥∥2
. (15)

In the SGD step, we only optimize the connection weights � of the
feature learning module, and ccck’s (wwwk ’s) are not updated. The SGD
algorithm is run for l training minibatch iterations. We summarize
the SCCL algorithm in Algorithm 2.

IV. EXPERIMENTS

In this section, we first study the properties of our algorithms in
Sections IV-B–IV-D. Afterward, we compare our algorithms with
other comparison algorithms in Sections IV-E–IV-G.

We compare our proposed methods with the original softmax,
vMF-A [26], COCO [22], CL [20], GCPL [35], and OCL [24].
Among them, the vMF-A and COCO are softmax loss such as
algorithms. They normalize both wwwk and fff i by the �2-normalization.
Their objective functions are the same, as shown in (5). The network
is trained to maximize the cosine similarity (wwwT

yi
fff i/�wwwyi �� fff i�). The

main difference between them is that vMF-A utilizes all the training
samples to update classifiers wwwk’s. We integrate the OCL with COCO
together and still denote it as OCL in the experiments.

A. Datasets and Settings

First, we test our methods on five visual classification datasets:
CIFAR-10 [44], CIFAR-100 [44], Tiny ImageNet [45], Oxford-IIIT
Pet [10], and Flower-102 [11]. The settings of training set and test set
follow the common practice in these datasets. The CIFAR-10 dataset
consists of 32 × 32 color images in ten classes, with 6000 images
per class. There are 50 000 training images and 10 000 test images.
The CIFAR-100 dataset includes 100 classes and has the same
image resolution as in CIFAR-10. It contains 600 images per class,
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of which 500 images are used for training and 100 images for
testing. Tiny ImageNet dataset is a subset of ImageNet, including
more than 1 00 000 images from 200 classes. For each class, there
are 500 training images and 50 validation images. For the Flower-
102 dataset and the Oxford-IIIT Pet dataset, we follow common
practices [10], [11], [26].

Among those five datasets, the last two are fine-grained visual
categorization (FGVC) datasets [10]–[13]. The FGVC case requires
classifiers to distinguish the subcategory from the same supercategory.
For instance, given a set of dog and cat images, conventional
classification tasks aim at distinguishing the dogs (cats) from cats
(dogs). In the FGVC case, the classifiers are required to classify the
breeds of dogs or cats, such as Abyssinian (cat), Bengal (cat), Boxer
(dog), and Chihuahua (dog). FGVC datasets are known that samples
from the same subcategory share relatively low similarities, while
samples of different subcategories often have high similarities. The
correct recognition is determined by subtle and local features. Hence,
the FGVC case is more challenging in comparison with general
classification.

We choose ResNet [16] as the feature extractor for these five
benchmark datasets. All models are implemented based on the
Pytorch [46]. The momentum and weight decay for minibatch-based
SGD are 0.9 and 0.0005, respectively. α is set to 40 for all
experiments unless otherwise specified. In addition, no annotation
information, such as bounding box or image segmentations, is used
for FGVC datasets. In the comparison section, we run the experiments
five times and report the results in “best accuracy, mean accuracy,
and standard deviation” as in [16].

For CIFAR-10, CIFAR-100, and Tiny ImageNet, we train
ResNet [16] from scratch with a batch size of 256. Considering
the difficulty of the datasets, we use the ResNet34 [16] for Tiny
ImageNet, and the ResNet18 is used for CIFAR-10 and CIFAR-100.
For these three datasets, all algorithms are trained for 200 epochs.
The learning rate starts with 0.1 and is divided by 10 every 50
epochs. We found that exploding gradients [47], [48] may happen
in our approaches at the initial stage. The reason is that the pre-set
α = 40 may lead to large Lintra when the connection weights of the
feature learning module of CNNs are randomly initialized. To avoid
this problem, we adopt the warm-start technique [32]. Specifically,
we use Lsoftmax to supervise the first several epochs.

For Oxford-IIIT Pet and Flower-102, we fine-tune ResNet34 [16]
that is pretrained on ImageNet [45]. The batch size for these two
datasets is 64. The learning rate begins with 0.001 for Oxford-IIIT
Pet and 0.01 for Flower-102. It is divided by 10 after 80 and 120
epochs. The training is finished after 160 epochs. Here, the CCL
approach and SCCL approach are directly applied to optimize the
whole structure.

To further evaluate the proposed algorithms, we consider the
face verification on labeled face in wild (LFW) dataset [9]. The
LFW dataset contains 13 233 web-collected facial images from
5749 persons. The training set is CASIA-WebFace [49], including
4 94 414 images from 10 575 identities. For this task, we use a
20-layer CNN. The training lasts for 30 epochs with a batch size
of 256. The learning rate starts from 0.1 and decreases by 0.1 after
16, 25 epochs.

B. Visualization of Feature Space
Before presenting the experimental results, we use the MNIST

dataset [18] to visualize the feature vectors. Following the common
practice in visualizing the distribution of feature vectors [20], [39],
we set the dimension of the deep feature space of a small CNN
to 2, i.e., d = 2. The CNN architecture is the same as that in [39].
In the example, we fix α at 20. The learned feature spaces of various

TABLE I

CLASSIFICATION ACCURACIES (%) FOR VARIOUS NUMBERS OF
MINIBATCH PRESENTATIONS IN THE SGD STEP. THE DATASET

IS FLOWER-102. THE NUMBER OF RUNS IS FIVE. THE

NETWORK STRUCTURE IS RESNET34

algorithms are shown in Fig. 2. The figure shows the scattering
plots of the extracted feature vectors. The horizontal axis is the
first component of the feature vector, whereas the vertical axis is
the second component.

We can observe that, compared to softmax, the COCO, OCL, and
vMF-A algorithms lead to the situation that the feature vectors from
the same class are with a “thinner” distribution in the feature space.
This is because these three algorithms focus on learning a better
angular distribution. Hence, the feature vectors are forced to be close
to their class weight vectors in the angular distance. However, similar
to the softmax loss, these three algorithms ignore the intra-class
compactness and the features are still pulled to fill in the space, that
is, large intra-class variation still exists.

On the contrary, the GCPL, CL, CCL, and SCCL algorithms
improve the intra-class similarity. Feature samples are distributed
around their class centers as shown in Fig. 2(e)–(h). In addition,
the feature samples of CCL and SCCL are distributed on the surface
of a hypersphere, that is, CCL and SCCL can provide a normalization
effect on feature magnitude.

Note that in Section IV-G, we use the CIFAR-10 to show the cosine
similarity of arbitrary pairs of feature vectors in various algorithms.

C. Effect of the Number l of Minibatch Training in the SGD Step
In our two proposed algorithms, we use the alternative scheme to

update the network parameters. For the first step that updates the
centers, we have an analytical formula. For each SGD step, we need
to train the remaining parameters for l minibatch presentations.

To study the influence of l , we set λ = 0.1 and consider the
Flower-102 and Oxford-IIIT Pet datasets with various l values.
The values of l for Flower-102 and Oxford-IIIT Pet are l ∈
{16, 32, 48, 64, 96, 128} and l ∈ {29, 58, 70, 87, 100, 116}, respec-
tively. The results for Flower-102 and Oxford-IIIT Pet are reported
in Tables I and II, respectively. For easier comparison, we also list
the results of the softmax in the tables.

We can observe that the proposed CCL and SCCL algorithms
are superior to the softmax algorithm on both datasets. For the
Flower-102 dataset, the classification performances of the two pro-
posed algorithms are higher than 95.0%, with the smallest mean
accuracy 95.20% given by the SCCL (l = 48). The average accuracy
of softmax is 93.24% that is around 2% lower than the average
accuracies of CCL and SCCL. For the best result, the CCL algorithm
achieves an accuracy of 95.79% when l = 64. The result is 2.31%
higher than the best result (93.48%) of softmax.

Similarly, for the Oxford-IIIT Pet dataset, the accuracies of the
two proposed algorithms are higher than 92.0%. The smallest mean
accuracy is the case that the SCCL with l = 70. The average
accuracy of softmax is 90.55%, which is around 2% lower than the
average accuracies of CCL and SCCL. For the best result, the CCL
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TABLE II

CLASSIFICATION ACCURACIES (%) FOR VARIOUS NUMBERS OF
MINIBATCH PRESENTATIONS IN THE SGD STEP. THE DATASET

IS OXFORD-IIIT PET. THE NUMBER OF RUNS IS FIVE.
THE NETWORK STRUCTURE IS RESNET34

TABLE III

CLASSIFICATION ACCURACIES (%) WITH VARIOUS LOSS WEIGHT λ’S ON

THE CIFAR-10 DATASET OVER FIVE RUNS. THE NETWORK
STRUCTURE IS RESNET18

TABLE IV

CLASSIFICATION ACCURACIES (%) WITH VARIOUS LOSS WEIGHT λ’S ON

THE CIFAR-100 DATASET OVER FIVE RUNS. THE NETWORK
STRUCTURE IS RESNET18

algorithm achieves 1.86% higher performance than 91.03% of
softmax.

Overall, the proposed algorithms work well with a large range
of l , though the centers are not updated in each training iteration
of SGD. In addition, small standard deviations of the proposed
algorithms indicate that they can provide stable classification results
with various l’s.

D. Classification Performance With Various Loss Weight λ

The weighting parameter λ can balance Lsoftmax and Lintra. We use
the CIFAR-10 and CIFAR-100 datasets to discuss the influence
of λ. We try several λ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} for the two
datasets. During training, the centers are updated every 196 minibatch
presentations. The results for CIFAR-10 and CIFAR-100 are listed
in Tables III and IV, respectively.

It is observed that our proposed structures consistently improve the
performance of the original softmax. For CIFAR-10, CCL and SCCL
can improve the accuracy from 93.57% to over 94.10% with 0.53%
gain averagely. Improvements can also be achieved on CIFAR-100

from 74.87% to over 75.07% in average. The facts indicate that
techniques related to intra-class compactness are needed to improve
the feature discrimination. The weighting parameter can be selected
over a wide range from 0.01 to 0.2. In this range, the performance
variation is not very large. This means that good λ can be selected
in an efficient way. However, λ cannot be set too large. For example,
when λ = 0.5, the averaged results of both CCL and SCCL are lower
than 76.0% on the CIFAR-100 dataset. Also, small standard deviation
values of the proposed algorithms indicate that both CCL and SCCL
work well and stable with various λ values.

E. Classification Performance Comparison

The comparison results are listed in Table V. For each dataset,
the best result between CCL and SCCL is marked in bold, while the
best result of their counterparts is marked in underline. From the
table, our methods outperform CL on all datasets with large improve-
ments. For CIFAR-10, CCL improves the performance of CL from
93.87% to 94.61%, which is 0.74% improvement. In addition, SCCL
is 2.08% higher than CL for CIFAR-100 and 1.38% higher for
Flower-102. CCL also achieves 1.81% and 1.58% improvements on
these two datasets over CL. The accuracy of SCCL is 0.98% higher
than 91.61% of CL on Oxford-IIIT Pet. On Tiny ImageNet, the SCCL
and CCL improve the CL from 63.84% to 63.91% and 64.47%,
respectively.

For the comparison among all methods, the accuracy of SCCL is
0.88% higher than that of COCO on CIFAR-10 and 2.08% higher
than that of CL on CIFAR-100. For Flower-102, CCL improves the
best result of vMF-A from 95.01% to 95.79%, with 0.78% gain. CCL
achieves an accuracy of 92.89% on Oxford-IIIT Pet, which is 0.47%
higher than the accuracy 92.42% of vMF-A. The CCL has 0.63%
gain over CL on Tiny ImageNet from 63.84% to 64.47%.

From Table V, the proposed algorithms outperform their counter-
parts both in terms of best results and the averaged results on all five
datasets.

F. Face Verification

Following the standard protocol of unrestricted with labeled outside
data, we test 6000 pairs of face images. We extract the 512-D
feature vector for each image and its horizontally flipped one and
concatenate them as the final identity representation. We use the
cosine similarity of two identity representations as the score for
verification. The 6000 pairs are divided into ten folds. We compute
the verification accuracies on them and report the average results
in Table VI. Overall, CCL gives the highest verification accuracy of
99.00%, outperforming 98.72% of softmax and 98.77% of CL by
0.28% and 0.23%, respectively. In addition, CCL outperforms the
COCO, vMF-A, GCPL, and OCL by 0.45%, 0.70%, 0.32%, and
0.55%, respectively.

G. Visualization of Intra-Class Similarity and
Inter-Class Separability

In this section, we present the confusion matrices of various
approaches [39]. The CIFAR-10 dataset is considered and the con-
fusion matrices are shown in Fig. 3. In the figures, the lighter color
means that the corresponding feature vectors are more similar (the
cosine similarity is larger). On the contrary, darker color represents
that the feature vectors have lower similarity. It can be observed that
the matrices of our two algorithms are lighter on the main diagonal
and darker in the other areas. Hence, the proposed approaches can
significantly enhance the intra-class similarity.

To further investigate the intra-class similarity and inter-class
separability, we record the histograms of the cosine similarities for
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TABLE V

CLASSIFICATION ACCURACIES (%) OF VARIOUS ALGORITHMS ON FIVE BENCHMARK DATASETS OVER FIVE RUNS

Fig. 3. Confusion matrices on the CIFAR-10 dataset. (a) Software.
(b) COCO [22]. (c) OCL [24]. (d) vMF-A [26]. (e) GCPL [35]. (f) CL [20].
(g) CCL. (h) SCCL.

TABLE VI

FACE VERIFICATION PERFORMANCE (%) ON LFW

positive and negative pairs [22], [39]. A positive pair means that the
two feature vectors are from the same class, whereas a negative pair
means that the two feature vectors are from different classes.

When the feature vectors from different classes are well separated,
the peak of the negative pair histogram should be near zero in terms
of cosine similarity. On the other hand, when the feature vectors
from the same class are well clustered, the peak of the positive pair
histogram should be near one in terms of cosine similarity.

As shown in Fig. 4(g) and (h) compared to other algorithms, for
our proposed algorithms, the peaks of the positive pair histograms

Fig. 4. Histogram of cosine similarity for positive and negative pairs on
CIFAR-10 for different methods. (a) Software. (b) COCO [22]. (c) OCL [24].
(d) vMF-A [26]. (e) GCPL [35]. (f) CL [20]. (g) CCL. (h) SCCL.

TABLE VII

MEAN AND STANDARD DEVIATION OF COSINE SIMILARITY FOR POSITIVE

AND NEGATIVE PAIRS ON THE CIFAR-10 DATASET

are closer to one. This means that, with our algorithms, the feature
vectors from the same class are well clustered.

At the same time, compared to other algorithms, for our proposed
algorithms, the peaks of the negative pair histograms are closer to
zero. This means that, with our algorithms, the feature vectors from
different classes are well separated.

Table VII shows the cosine similarities for positive and negative
pairs. In the table, the “Difference” is the difference between the
mean similarity of positive pairs and the mean similarity of negative
pairs. We can observe that, compared to other algorithms, our
proposed algorithms have larger mean similarities for positive pairs.
This indicates that our proposed algorithms can improve intra-class
similarity. Meanwhile, our proposed algorithms have smaller mean
similarities for negative pairs. In addition, our proposed algorithms
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Fig. 5. Convergence on Tiny ImageNet.

Fig. 6. Average training time (in hours) over five runs on (a) Tiny ImageNet
and (b) CASIA-WebFace.

have larger differences between the mean similarities for negative
pairs and the mean similarities for positive pairs. We can conclude
that our proposed algorithms can enhance inter-class separability.

H. Convergence and Computational Complexity

First, we investigate the convergence speed of the different
approaches. We show the training loss of all the algorithms on the
Tiny ImageNet dataset in Fig. 5. Here, we update the centers at each
epoch (not each minibatch iteration). It is observed that CCL and
SCCL have a comparable convergence speed to other methods.

The computational complexity for backward propagation is about
two times of forward propagation [50]. Let � be the complexity per
image of forward propagation. Then, the total complexity of a training
epoch is 3 N�, where N is the number of images in the training set.

In the CCL and SCCL algorithm, for every l minibatch presenta-
tions, we update the centers. When we update the centers, we need to
perform a forward propagation. Hence, the complexity of the center
update is N�. Let m be the size of a minibatch and τ be the number
of center updates in an epoch. Clearly, we have τ = (N/ml). Hence,
the total complexity of CCL and SCCL is (3 + τ)N� for a training
epoch. From our experience, τ can be chosen from 0.5 to 2. Note that
τ = 0.5 means that we update the center every two epochs. Here,
we use the cases of τ ∈ {1, 2} to illustrate the complexities of CCL
and SCCL.

For Tiny ImageNet, the complexity per image of a forward
propagation [16] is 3.675 × 109 and we set τ = 1. As there are
105 training images, the total complexity for an epoch without center
update is 3 × 3.675 × 1014 = 1.103 × 1015. For the proposed CCL
and SCCL with τ = 1, the complexity is then equal to 1.470 × 1015.
This means that the additional complexity is 3.675 × 1014.

For CASIA-WebFace, the complexity per image of a forward
propagation is 1.843 × 109 and we set τ = 2. As there are
around 0.5 × 106 training images, the total complexity for an epoch
without center update is 1.5 × 1.843 × 1015 = 2.764 × 1015. Thus,
the complexity for CCL and SCCL is 4.608 × 1015. This means that
the additional complexity is 1.844 × 1015.

To conclude, the computational complexity of the proposed algo-
rithm and their counterparts remains in the same order.

Computational complexity of various methods can be verified by
measuring the training time. We report the average training time of
various algorithms over five runs in Fig. 6. It is observed that our
algorithms and vMF-A take roughly 15.5 h on Tiny ImageNet and
around 6.6 h on CASIA-WebFace. It is noteworthy that all algorithms
have the similar inference time, and hence, we do not show the
inference time. It is because the inference procedure of all algorithms
is nearly the same. To conclude, the improved classification accuracy
and efficient inference suggest that the proposed algorithms could be
a candidate in real applications.

V. CONCLUSION

Intra-class compactness and inter-class separability of deep fea-
tures are important to improve the CNN discrimination ability. This
brief proposes the CCL and SCCL for enhancing the intra-class
compactness. Combined with the softmax loss, the joint supervision
scheme can maximize the compactness and separability simultane-
ously. Moreover, the two proposed algorithms learn class center ana-
lytically with utilizing the entire training set. In this way, the global
information of the deep feature space is captured by our formulation.
Based on the alternative strategy, we propose two learning algorithms
to optimize the structure. The experiments are conducted on six
commonly used benchmark datasets. It is demonstrated that compact
and separate features can be extracted with the proposed CCL
algorithm and SCCL algorithm. In addition, the proposed methods are
better than several state-of-the-art approaches. Similar to CL and PL,
the two proposed algorithms can reduce the intra-class variation and
restrict the feature distribution to be around their class centers. Thus,
it can preserve spaces for unknown classes. In the future, we will
explore the class-incremental learning scenario, where the CNN needs
to deal with unknown classes and maintain good performance for the
known classes simultaneously.

APPENDIX I
DERIVATION OF CENTER UPDATE

Consider that the connection weights � of the feature learning
module are fixed, and the centers in (10) can be solved as follows.
The problem stated in (10) can be decomposed into C individually
constrained optimization problems.

For simplicity, we focus on one specific Class y with center cccy ,
where y = 1, . . . , C . To maximize the similarities between the
instances and their corresponding center, we have to minimize Lintray

subject to cccT
ycccy = α2.

Let Ny be the number of samples that belonged to Class y and
let { fff iy

}’s be the feature vectors of the training samples belonged to
Class y. We introduce a Lagrange multiplier ζ . The Lagrangian of
the objective function with respect to Class y is given by

L(
cccy, ζ

) = 1

2Ny

Ny∑
iy=1

∥∥∥ fff iy
− cccy

∥∥∥2 + ζ
(
α2 − cccT

ycccy

)
. (16)

Differentiating the Lagrangian function with respect to ζ and cccy

and setting the derivatives to zero, we obtain

− 1

Ny

Ny∑
iy =1

(
fff iy

− cccy

)
− 2ζcccy = 0 and cccT

ycccy = α2. (17)

From (17), we get cccy = (1/(1 − 2ζ )Ny )
∑Ny

iy =1 fff iy
. Defining rrr y =∑Ny

iy =1 fff iy
, we can obtain (1/(Ny − 2Nyζ )2)rrr T

yrrr y = α2. Hence, ζ =
(1/2)(1 − (�rrr y�/αNy)) and

cccy = 1

(1 − 2ζ )Ny
rrr y = α

rrr y∥∥rrr y

∥∥ = α
∑Ny

iy =1 fff iy∥∥∥∑Ny
iy =1 fff iy

∥∥∥ . (18)
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