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In a multiple-input multiple-output (MIMO) radar system, there are a number of transmitters and re- 

ceivers. We can use a set of range measurements from MIMO system to locate a target. Each range 

measurement is the sum of the transmitter-to-target distance and target-to-receiver distance, which cor- 

responds to elliptic localization. This paper addresses the MIMO radar target localization problem with 

possibly outlier measurements. We formulate the problem via non-smooth constrained optimization with 

an � 1 -norm objective function, which is non-differentiable, and the Lagrange programming neural net- 

work (LPNN) is adopted as the solver. As the LPNN framework cannot handle non-differentiable objective 

functions, we utilize two techniques, namely, approximation of the � 1 -norm and locally competitive al- 

gorithm, to develop two LPNN based algorithms. Moreover, the stability of the LPNN-based algorithms 

is studied. Simulation results demonstrate that the proposed algorithms outperform two state-of-the-art 

algorithms. 
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. Introduction 

Conventional radar systems process a single waveform at a

ime. On the other hand, a multiple-input multiple-output (MIMO)

adar system [1–5] uses multiple antennas to transmit and receive

 number of waveforms and process the received signals jointly.

n doing so, the MIMO technology is superior to the conventional

ystems in target detection and localization. There are two MIMO

adar configurations. One is colocated configuration in which the

ntennas are placed close together [4] . A colocated MIMO radar

ystem utilizes the waveform diversity for performance improve-

ent. Another setting is widely distributed configuration in which

he antennas are widely separated [3] . A widely distributed MIMO

adar system employs the spatial diversity to improve its localiza-

ion accuracy. This paper considers the target localization problem

sing the widely distributed MIMO radar. 

For widely distributed MIMO radar systems, there are two ap-

roaches to locate a target. They are direct and indirect meth-

ds. In the direct approach, including the maximum likelihood

ML) estimators [1,6] , we calculate the target position directly us-

ng the measurements collected by the antennas. These methods

re based on two-dimensional search, which requires enormous

omputational power. While in the indirect approach [1,7–22] , we
∗ Corresponding author. 
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rst estimate the range measurements. Each range measurement is

he sum of the transmitter-to-target distance and target-to-receiver

istance. By solving a set of elliptic equations of the range mea-

urements, we can estimate the target location. In this case, the ML

ethods can also be employed to locate the target iteratively with

n initial position estimate [1,7] . On the other hand, the elliptic

quations can be transformed to a set of linear equations. To this

nd, the commonly used technique is linearization. Afterwards, we

an use the least squares (LS) [2,8–10] or weighted least squares

WLS) [11,13,17–20] to estimate the target location. To name a few,

n [2] , the elliptic equations are linearized into two groups of lin-

ar equations first. Then the target location is estimated based on

S. In [11] , a quadratically constrained quadratic program (QCQP)

roblem is obtained after linearization of the range measurements.

y solving the QCQP with the WLS concept, unbiased estimation of

arget position can be achieved. 

Moreover, positioning methods can be broadly divided into two

roups, including iterative and closed-form approaches. Due to the

ighly nonconvex and nonlinear nature of positioning problem, it-

rative approaches require initialization being close to the true tar-

et location [1,7,15,16] . In comparison, the closed-form positioning

pproaches are computationally preferable due to their low com-

lexity and global convergence [11–13,21,22] . . It is worth noting

hat most algorithms are designed to locate a stationary target. Re-

ently, new advancements [23–32] are made in locating a moving

arget where both position and velocity of the target need to be
stimated. 

https://doi.org/10.1016/j.sigpro.2020.107574
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Fig. 1. MIMO radar localization system. 
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In designing the localization approach, the noise is mostly as-

sumed to be Gaussian distributed. However, in practical situations,

there may exist non-line-of-sight (NLOS) propagation and signal

interference [33–37] . Hence, noise, as well as, range measurements,

may contain outliers, which degrade the performance of LS based

algorithms. Another alternative is the maximum correntropy crite-

rion (MCC) [38] . But the complexity of MCC-based formulation is

high since it involves convex optimization in every iteration step. 

In this paper, we develop two robust target localization al-

gorithms for distributed MIMO radar systems. Our solutions are

based on the Lagrange programming neural network (LPNN)

framework [15,39–43] . This framework is a universal solver for

general differentiable constrained optimization problems with

equality constraints, in which the objective function and the con-

straints are twice differentiable. 

We formulate the MIMO localization problem as a constrained

optimization problem, namely, minimizing an � 1 -norm objective

function subject to a set of equality and inequality constraints.

Note that the � 1 -norm based objective function aims at achiev-

ing robustness against outliers. Our initial formulation for the

constrained optimization problem contains some inequality con-

straints which cannot be handled by the LPNN framework. Nev-

ertheless, in the latter stage, we show that those inequality con-

straints can be removed. 

Another important issue is that the LPNN cannot deal with non-

differentiable objective functions and constraints. To resolve this

issue, we use two strategies. In the first proposed algorithm, we

introduce a differentiable approximation function to replace the

� 1 -norm term in the objective function. In the second algorithm,

the internal state concept from the locally competitive algorithm

(LCA) [44] is utilized to avoid the non-differentiable issue of the

� 1 -norm. After the modification, the LPNN approach can be em-

ployed for target localization. In addition, we apply the augmented

term concept to stabilize the neural dynamics at equilibrium states.

The rest of this paper is organized as follows. The background

of MIMO radar target localization, LPNN and LCA are described

in Section 2 . In Section 3 , two target localization algorithms are

developed. The local stability of the two algorithms is proved in

Section 4 . Numerical results for algorithm evaluation and compar-

ison are provided in Section 5 . Finally, conclusions are drawn in

Section 6 . 

2. Background 

2.1. Notation 

We use a lower-case or upper-case letter to represent a scalar,

while vectors and matrices are denoted by bold lower-case and

upper-case letters, respectively. I denotes an identity matrix with

appropriate dimensions. The transpose operator is represented by

( · ) T . The diag (c 1 , . . . , c n ) denotes a diagonal matrix whose diago-

nal components are c 1 , . . . c n . In addition, 1 m × n and 0 m × n repre-

sent the m × n matrix of 1 and m × n zero matrix, respectively.

Other mathematical symbols are defined in their first appearance. 

2.2. MIMO Radar localization 

A MIMO radar localization system [15,37] consists of M trans-

mitters and N receivers, which is illustrated in Fig. 1 with M = N =
3 . To locate the target, each transmitter sends out a distinct elec-

tromagnetic wave. All these electromagnetic waves are reflected by

the target. Afterwards, they are collected by the receivers. That is,

each receiver receives and processes M signals jointly. 

Let p p p = [ x, y ] T be the unknown position of the target. Let t t t i =
[ x t 

i 
, y t 

i 
] T and r r r j = [ x r 

j 
, y r 

j 
] T be i th transmitter and j th receiver, re-

spectively, where i = 1 , . . . , M and j = 1 , . . . , N. Let d t 
i 

be the dis-
ance from the transmitter t t t i to target, and d r 
j 

be the distance from

he target to receiver r r r j . They are given by 

 

t 
i = ‖ p p p − t t t i ‖ 2 = 

√ 

(x t 
i 
− x ) 2 + (y t 

i 
− y ) 2 , (1)

 

r 
j = ‖ p p p − r r r j ‖ 2 = 

√ 

(x r 
j 
− x ) 2 + (y r 

j 
− y ) 2 . (2)

t should be noticed that we do not know these range values. In-

tead, we are only able to estimate the overall propagation time

i,j from the i th transmitter to the j th receiver. The total distance

an be computed from τ i,j , given by 

 i, j = d t i + d r j = cτi, j , (3)

or i = 1 , . . . , M, j = 1 , . . . , N, where c is the speed of light. 

In the practical scenarios, the measured propagation time τ i,j 

sually contains noise. Hence we can model the distance as 

ˆ 
 i, j = d i, j + εi, j , (4)

here ε i,j denotes the noise. The aim of target localization is to

stimate the position of target p p p from { t t t i } ’s, { r r r j } ’s and { ̂  d i, j } ’s. Con-

entionally, it is assumed that the noise components ε i,j ’s follow

ero-mean Gaussian distribution. According to the LS [10,15] , the

roblem is formulated as 

in 

p p p 

M ∑ 

i =1 

N ∑ 

j=1 

(
ˆ d i, j − ‖ p p p − t t t i ‖ 2 − ‖ p p p − r r r j ‖ 2 

)2 

. (5)

raditional gradient based approaches may not be suitable to min-

mize the cost function, which is clearly observed in (5) as the

radient vector of the objective function includes factors (1 / ‖ p p p −
 

 

 i ‖ 2 ) and (1 / ‖ p p p − r r r j ‖ 2 ) . Based on (1) and (2) , the problem can be

ewritten as 

min 

p p p ,d t 
i 
,d r 

j 

M ∑ 

i =1 

N ∑ 

j=1 

(
ˆ d i, j − d t i − d r j 

)2 

, (6a)

.t. d t i = ‖ p p p − t t t i ‖ 2 , i = 1 , . . . , M, (6b)

d r j = ‖ p p p − r r r j ‖ 2 , j = 1 , . . . , N. (6c)

Denote 

d d d 
t = [ d t , . . . , d t , d t , . . . , d t , . . . , d t , . . . , d t ] T , 
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1 For the absolute function | z |, the sub-differential ∂ | z | at z = 0 is equal to [ −1 , 1] . 
d d d 
r = [ d r 1 , . . . , d 

r 
1 , d 

r 
2 , . . . , d 

r 
2 , . . . , d 

r 
N , . . . , d 

r 
N ] 

T , 

ˆ d d d = [ ̂  d 1 , 1 , . . . , ˆ d M, 1 , ˆ d 1 , 2 , . . . , ˆ d M, 2 , . . . , ˆ d 1 ,N , . . . , ˆ d M,N ] 
T , 

here they are all MN × 1 vectors. Then (6) can be rewritten as a

onstrained optimization problem, given by 

min 

 

p p ,d t 
i 
,d r 

j 

∥∥∥ˆ d d d − d d d 
t − d d d 

r 
∥∥∥2 

2 
, (7a) 

.t. d t i 
2 = ‖ p p p − t t t i ‖ 

2 
2 , i = 1 , . . . , M, (7b)

d r j 
2 = ‖ p p p − r r r j ‖ 

2 
2 , j = 1 , . . . , N, (7c)

d t i ≥ 0 , i = 1 , . . . , M (7d)

d t i ≥ 0 , j = 1 , . . . , N. (7e)

In many real situations, the measured distances may contain

utliers. For example, there may have some obstacles in the en-

ironment, resulting in NLOS propagation in transmission paths

etween the transmitters and target and/or target and receivers.

n (7) , the objective function is an � 2 -norm term indicating that

t cannot eliminate the influence caused by the outlier measure-

ents. 

.3. Lagrange programming neural network 

The LPNN, introduced in [39] , is an analog neural network ap-

roach. It has the capability to solve the general nonlinear con-

trained optimization problem, given by 

in 

z z z 
f ( z z z ) (8a) 

.t. g g g ( z z z ) = 0 1 ×n , (8b) 

here f : R 

n → R is the objective function, z z z = [ z 1 , . . . , z n ] 
T is the

ollection of the decision variables, and g g g : R 

n → R 

m ( m < n ) rep-

esents m equality constraints. 

In the LPNN framework, we first construct the Lagrangian of (8) ,

iven by 

 ( z z z , ζ) = f ( z z z ) + ζT g g g ( z z z ) , (9) 

here ζ = [ ζ1 , . . . , ζm 

] T is the collection of Lagrange multipliers. 

In this LPNN, there are n variable neurons and m Lagrangian

eurons. The n variable neurons are used to hold the values of the

 decision variables. The m Lagrangian neurons are used to hold

he values of the m Lagrange multipliers. The dynamics of the neu-

ons can be defined as 

1 

ε

d z z z 

d t 
= −∂L ( z z z , ζ) 

∂ z z z 
, (10a) 

1 

ε

d ζ

dt 
= 

∂L ( z z z , ζ) 

∂ ζ
, (10b) 

here ε is the characteristic time constant depending on the

mpedance of the neural circuit. For simplicity, we set ε equal to

ne. The dynamic in (10a) aims at seeking for a solution with the

inimum objective value. In addition, the dynamics in (10b) aims

t seeking for a solution that satisfies the constraints. The state

f the network will reach a stable state under some mild condi-

ions [15,39,43] . After the dynamics settle down at an equilibrium

oint, the output of the neurons is the solution of the optimization

roblem. Obviously, both f and g g g should be differentiable. It should

e noticed that if they are not differentiable, we cannot define or

mplement the dynamics in (10) . 
.4. Locally competitive algorithm 

The LCA concept [44] is also an analog neural network model

hat is used to solve the following unconstrained optimization

roblem: 

 lca = 

1 

2 

‖ b b b − �z z z ‖ 

2 
2 + τ‖ z z z ‖ 1 , (11) 

here z z z ∈ R 

n , b b b ∈ R 

m , and � ∈ R 

m ×n (m < n ) . To construct the dy-

amics of LCA, we need to calculate the gradient of L lca with re-

pect to z z z . However, τ‖ z z z ‖ 1 is non-differentiable, and the gradient

f (11) is 

 z z z L lca = −�( b b b − �z z z ) + τ∂‖ z z z ‖ 1 , (12) 

here ∂‖ z z z ‖ 1 denotes the sub-differential of ‖ z z z ‖ 1 . According to the

efinition of sub-differential, at the non-differentiable point, the

ub-differential is equal to a set. 1 To handle this issue, the LCA

oncept introduces an internal state vector u u u = [ u 1 , . . . , u n ] 
T and

efines a relationship between u u u and z z z as 

 i = T τ (u i ) = 

{
0 , | u i | ≤ τ, 

u i − τ sign (u i ) , | u i | > τ, 
(13)

here i = 1 , . . . , n . In the LCA, z z z and u u u are known as the output

tate variable vector and the internal state variable vector, respec-

ively, and τ denotes the threshold of the function. Furthermore,

rom (13) , we can deduce that 

 

 

 − z z z ∈ τ∂‖ z z z ‖ 1 . (14) 

ence, LCA defines its dynamics on u u u rather than z z z as 

d u 

u u 

dt 
= −∂ z z z L lca = −u 

u u + z z z + �T ( b b b − �z z z ) . (15)

t is worth noting that if the dynamics of z z z are used directly, we

eed to calculate ∂‖ z z z ‖ 1 which is equal to a set. Therefore, the LCA

ses d u u u / dt to define the dynamics rather than d z z z / dt . 

. Development of proposed algorithms 

.1. Problem formulation 

Most algorithms for target localization assume that the noise

n (7) is Gaussian distributed. Thus the positioning problem is

olved by minimizing the � 2 -norm of the range measurement er-

ors. However, in real situations, the range measurements may

ontain outliers due to signal interference or NLOS propagation. It

s well known that, compared with the � 2 -norm, the � 1 -norm is

ess sensitive to outliers. Hence in our proposed formulation, the

IMO radar localization problem is modified as: 

min 

 

p p ,d t 
i 
,d r 

j 

∥∥∥ˆ d d d − d d d 
t − d d d 

r 
∥∥∥

1 
, (16a) 

.t. d t i 
2 = ‖ p p p − t t t i ‖ 

2 
2 , i = 1 , . . . , M, (16b)

d r j 
2 = ‖ p p p − r r r j ‖ 

2 
2 , j = 1 , . . . , N, (16c)

d t i ≥ 0 , i = 1 , . . . , M, (16d)

d t i ≥ 0 , j = 1 , . . . , N. (16e)

It is clear that in (16) the formulation includes M + N equality

onstraints and M + N inequality constraints. 

To use the LPNN framework, we need to address two is-

ues in our formulation. First, the LPNN framework cannot han-

le problems with inequality constraints, but the formulation
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Fig. 2. (1/ γ )ln (cosh ( γ x )). 
in (16d) and (16e) includes inequality constraints. Secondly, the

LPNN approach requires that the objective function and constraints

should be twice differentiable. Obviously, due to the � 1 -norm term,

the objective function in (16a) does not satisfy this requirement. 

From (3) and (4) , we know that 

ˆ d i, j = d t i + d r j + εi, j . (17)

For small noise level (the magnitude of ε i,j is small) and NLOS

noise ( ε i,j is positive), the measurement value ˆ d i, j is greater than

d t 
i 

and d t 
i 
. Hence, it is reasonable to assume that ˆ d i, j > d t 

i 

∗
and

ˆ d i, j > d r 
j 
∗
, for i and j , where d t 

i 

∗
’s and d t 

j 

∗
’s are the optimal val-

ues. Based on the above assumption, we derive Theorem 1 , which

indicates that the inequality constraints in (16d) and (16e) can be

removed. 

Theorem 1. From the signal model (4) , we can assume that ˆ d i, j >

d t 
i 

∗
and ˆ d i, j > d r 

j 
∗
, where d t 

i 

∗
’s and d t 

j 

∗
’s are the optimal values. The

optimization problem in (16) is then equivalent to 

min 

p p p ,d t 
i 
,d r 

j 

∥∥∥ˆ d d d − d d d 
t − d d d 

r 
∥∥∥

1 
, (18a)

s.t. d t 
i 

2 = ‖ p p p − t t t i ‖ 

2 
2 , i = 1 , . . . , M, (18b)

d r 
j 

2 = ‖ p p p − r r r j ‖ 

2 
2 , j = 1 , . . . , N. (18c)

Proof. Suppose that [ p p p ∗T , d t 
1 

∗
, . . . , d t 

M 

∗
, d r 

1 
∗
, . . . , d r 

N 
∗
] T is the opti-

mal solution of (18) . According to (18b) and (18c) , we have that

[ p p p ∗T , | d t 
1 

∗| , . . . , | d t 
M 

∗| , | d r 
1 
∗| , . . . , | d r 

N 
∗| ] T is a feasible solution. 

Since ˆ d i, j ’s are range measurements, we have ˆ d i, j ≥ 0 . From the

model defined in (3) , we have 

ˆ d i, j = d t i + d r j + εi, j . (19)

Hence it can be assumed that ˆ d i, j > d t 
i 

∗
and 

ˆ d i, j > d r 
j 
∗
, since ˆ d i, j ≥

0 , d t 
i 

> 0 , and d r 
j 
> 0 . Then we have the following inequality: ∣∣∣ ˆ d i, j − d t i 

∗ − d r j 
∗
∣∣∣ ≥

∣∣∣ ˆ d i, j − | d t i ∗| − | d r j ∗| 
∣∣∣, (20)

for ∀ i ∈ { 1 , . . . , M} and ∀ j ∈ { 1 , . . . , N} . 
To validate (20) , we check the sign of 

∣∣∣ ˆ d i, j − d t 
i 

∗ − d r 
j 
∗
∣∣∣2 

−∣∣∣ ˆ d i, j − | d t 
i 

∗| − | d r 
j 
∗| 

∣∣∣2 

under the assumption 

ˆ d i, j > d t 
i 

∗
and 

ˆ d i, j > d r 
j 
∗
.

After rearrangement, let 

R = 

∣∣∣ ˆ d i, j − d t i 
∗ − d r j 

∗
∣∣∣2 

−
∣∣∣ ˆ d i, j − | d t i ∗| − | d r j ∗| 

∣∣∣2 

= 2 ̂

 d i, j (| d t i ∗| + | d r j ∗| − d t i 
∗ − d r j 

∗
) + 2( d t i 

∗
d r j 

∗ − | d t i ∗|| d r j ∗| ) . (21)

There are four cases. 

• Case (a) d t 
i 

∗ ≥ 0 , d r 
j 
∗ ≥ 0 : 

In this case, it is obvious that 

R = 2 ̂

 d i, j ( d 
t 
i 

∗ + d r j 
∗ − d t i 

∗ − d r j 
∗
) + 2( d t i 

∗
d r j 

∗ − d t i 
∗
d r j 

∗
) = 0 . (22)

• Case (b) d t 
i 

∗
> 0 , d r 

j 
∗

< 0 : 

R = 2 ̂

 d i, j ( d 
t 
i 

∗ − d r j 
∗ − d t i 

∗ − d r j 
∗
) + 2( d t i 

∗
d r j 

∗ + d t i 
∗
d r j 

∗
) 

= −4 d r j 
∗
( ̂  d i, j − d t i 

∗
) . (23)

According to our assumption, ˆ d i, j − d t 
i 

∗
> 0 . Together with

−4 d r 
j 
∗

> 0 , we have R > 0. 
• Case (c) d t 
i 

∗
< 0 , d r 

j 
∗

> 0 : 

R = 2 ̂

 d i, j (−d t i 
∗ + d r j 

∗ − d t i 
∗ − d r j 

∗
) + 2( d t i 

∗
d r j 

∗ + d t i 
∗
d r j 

∗
) 

= −4 d t i 
∗
( ̂  d i, j − d r j 

∗
) . (24)

Similar to Case (b), ˆ d i, j − d r 
j 
∗

> 0 and −4 d t 
i 

∗
> 0 . Hence, R > 0. 

• Case (d) d t 
i 

∗
< 0 , d r 

j 
∗

< 0 : 

R = 2 ̂

 d i, j (−d t i 
∗ − d r j 

∗ − d t i 
∗ − d r j 

∗
) 

= −4 ̂

 d i, j ( d 
t 
j 

∗ + d r i 
∗
) . (25)

Since d t 
j 

∗ + d r 
i 
∗

< 0 and 

ˆ d i, j ≥ 0 , we have R = −4 ̂  d i, j ( d 
t 
j 

∗ +
d r 

i 
∗) > 0 . 

To sum up, from (22) –(25) , we conclude that (20) holds, and

btain 

M 

 

i =1 

N ∑ 

j=1 

∣∣∣ ˆ d i, j − d t i 
∗ − d r j 

∗
∣∣∣ ≥

M ∑ 

i =1 

N ∑ 

j=1 

∣∣∣ ˆ d i, j − | d t i ∗| − | d r j ∗| 
∣∣∣. (26)

Inequality (26) implies that the optimal objective value is

reater than or equal to the objective value achieved by

he feasible solution [ p p p ∗T , | d t 
1 

∗| , . . . , | d t 
M 

∗| , | d r 
1 
∗| , . . . , | d r 

N 
∗| ] T . Since

 p p p ∗T , d t 
1 

∗
, . . . , d t 

M 

∗
, d r 

1 
∗
, . . . , d r 

N 
∗
] T is the optimal solution, the equal-

ty in (26) must hold. That means, d t 
i 

∗ = | d t 
i 

∗| for ∀ i ∈ { 1 , . . . , M} ,
nd d r 

j 
∗ = | d r 

j 
∗| for ∀ j ∈ { 1 , . . . , N} . In other words, d t 

i 

∗ ≥ 0 for ∀ i ∈
 1 , . . . , M} , and d r 

j 
∗ ≥ 0 for ∀ j ∈ { 1 , . . . , N} . Therefore, we can re-

ove the inequality constraints in (16) . The proof is completed. �

Due to the non-differentiability of the � 1 -norm term in (18) , the

radient of the Lagrangian is not well-defined. To calculate the gra-

ient of � 1 -norm at the non-differentiable points, we utilize two

trategies to resolve the issue. Accordingly, they are developed in

he following subsection. 

.2. LPNN for robust MIMO radar localization 

Algorithm 1: � 1 -norm LPNN 

In the first algorithm, we consider using a differentiable � 1 -

orm approximation function [45] , given by 

(x ) = 

1 

γ
ln ( cosh ( γ x ) ) , (27)
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here γ > 1 is a constant. Fig. 2 shows the shapes of g ( x ) with

everal γ ’s. It is observed that | x | ≈ 1 
γ ln ( cosh ( γ x ) ) for a suffi-

iently large γ . 

To define the neural dynamics, we only need to implement the

radient of g ( x ). It is worth noting that the gradient of g ( x ) with

espect to x is equal to the hyperbolic tangent function tanh ( γ x )

hich is a frequently used activation function in neural networks.

ith this approximate function, (18) can be recast as 

in 

x x x 

M ∑ 

i =1 

N ∑ 

j=1 

1 

γ
ln ( cosh (γ ( ̂  d i, j − d t i − d r j ))) , (28a)

.t. d t i 
2 = ‖ p p p − t t t i ‖ 

2 
2 , i = 1 , . . . , M, (28b)

d r j 
2 = ‖ p p p − r r r j ‖ 

2 
2 , j = 1 , . . . , N, (28c)

here x x x = [ p p p T , d t 
1 
, . . . , d t 

M 

, d r 1 , . . . , d 
r 
N ] 

T . 

To improve the convexity and stability [39] , we include an aug-

ented term, given by 

C 

2 

( 

M ∑ 

i =1 

(
d t i 

2 − ‖ p p p − t t t i ‖ 

2 
2 

)2 

+ 

N ∑ 

j=1 

(
d r j 

2 − ‖ p p p − r r r j ‖ 

2 
2 

)2 

) 

(29) 

nto (28a) , where C > 0 is a constant. For a sufficiently large C [39] ,

he augmented term can improve the convexity of (28a) and ac-

elerate the convergence of the dynamics. In practical situations,

 can be selected empirically and the appropriateness can be re-

ected by the stability of the dynamics. Very large/small C would

ead to instability of the dynamics, while a proper C would lead to

table and convergent dynamics. 

In the LPNN framework, the Lagrangian neurons are used to

uide the state into the feasible region. With the aid of the aug-

ented term, this process can be accelerated. Because the impact

f the augmented term is to introduce a penalty into the cost func-

ion, it will penalize the state of network for any unfulfillment of

onstraints. Normally, the state of the network is initialized with a

andom point. The constraints may be significantly violated. With

 large C , the neural state is forced to approach the feasible re-

ion rapidly. For any point close enough to the feasible region, the

ugmented term will have little influence on the network state. 

When the network reaches a stable state, the augmented term

quals 0. Hence, the augmented term will not influence the opti-

al solution. It should also be noticed that without the augmented

erm, the resultant LPNN dynamics may not be stable and con-

ergent. According to [39] , with sufficient large C , around a local

inimum, the Hessian of the objective function is positive definite,

.e., the local minimum is stable. For the details of the augmented

erm, readers are referred to [39] . 

With the augmented term (29) , the Lagrangian of (28) is 

L ( x x x , β, λ) = 

M ∑ 

i =1 

N ∑ 

j=1 

1 

γ
ln ( cosh (γ ( ̂  d i, j − d t i − d r j ))) 

+ 

M ∑ 

i =1 

βi 

(
d t i 

2 − ‖ p p p − t t t i ‖ 

2 
2 

)
+ 

N ∑ 

j=1 

λ j 

(
d r j 

2 − ‖ p p p − r r r j ‖ 

2 
2 

)

+ 

C 

2 

( 

M ∑ 

i =1 

(
d t i 

2 − ‖ p p p − t t t i ‖ 

2 
2 

)2 

+ 

N ∑ 

j=1 

(
d r j 

2 − ‖ p p p − r r r j ‖ 

2 
2 

)2 

) 

(30) 

here x x x is the decision variable vector, β = [ β1 , . . . , βM 

] T and λ =
 λ1 , . . . , λN ] 

T are Lagrangian variable vectors. 

Then the LPNN can be utilized to handle the corresponding ana-

og circuit. According to the LPNN concepts given in (10) , the dy-
amics of our formulation become: 

d d t 
i 

dt 
= −∂L ( x x x , β, λ) 

∂d t 
i 

= 

N ∑ 

j=1 

tanh (γ ( ̂  d i, j − d t i − d r j )) − 2 βi d 
t 
i − 2 Cd t i 

(
d t i 

2 − ‖ p p p − t t t i ‖ 2 2 

)
, 

(31) 

d d r 
j 

dt 
= −∂L ( x x x , β, λ) 

∂d r 
j 

= 

M ∑ 

i =1 

tanh (γ ( ̂  d i, j − d t i − d r j )) 

−2 λ j d 
r 
j − 2 Cd r j 

(
d r j 

2 − ‖ p p p − r r r j ‖ 

2 
2 

)
, (32) 

d p p p 

dt 
= −∂L ( x x x , β, λ) 

∂ p p p 

= 2 

M ∑ 

i =1 

βi ( p p p − t t t i ) + 2 

N ∑ 

j=1 

λ j ( p p p − r r r j ) 

+2 C 

( 

M ∑ 

i =1 

( p p p − t t t i ) 
(

d t i 
2 − ‖ p p p − t t t i ‖ 

2 
2 

)

+ 

N ∑ 

j=1 

( p p p − r r r j ) 
(
d r j 

2 − ‖ p p p − r r r j ‖ 

2 
2 

)) 

, (33) 

dβi 

dt 
= 

∂L ( x x x , β, λ) 

∂βi 

= d t i 
2 − ‖ p p p − t t t i ‖ 

2 
2 , (34)

dλ j 

dt 
, = 

∂L ( x x x , β, λ) 

∂λ j 

= d r j 
2 − ‖ p p p − r r r j ‖ 

2 
2 ., (35)

here i = 1 , . . . , M and j = 1 , . . . , N. Eqs. (31) –(33) are used for

eeking the minimum objective value, while (34) –(35) constrain

he equilibrium point into the feasible region. In this formulation,

here are M + N + 2 variable neurons to hold the M + N + 2 de-

ision variables and M + N Lagrangian neurons for the M + N La-

rangian variables. 

Algorithm 2: � 1 -norm LPNN-LCA 

In this algorithm, we utilize the LCA technique to solve the sub-

ifferentiable problem in (18) . We introduce a dummy variable z z z

nd rewrite (18) as 

in 

x x x 
‖ z z z ‖ 1 , (36a) 

.t. z z z = 

ˆ d d d − d d d 
t − d d d 

r 
, (36b) 

d t i 
2 = ‖ p p p − t t t i ‖ 

2 
2 , i = 1 , . . . , M, (36c)

d r j 
2 = ‖ p p p − r r r j ‖ 

2 
2 , j = 1 , . . . , N, (36d)

here x x x = [ p p p T , z z z T , d t 
1 
, . . . , d t 

M 

, d r 
1 
, . . . , d r 

N 
] T and z z z = [ z 1 , . . . , z MN ] 

T . 

For this formulation, we also introduce an augmented term

nto the objective function to make the system more stable.

hus, (36) can be modified as: 

in 

x x x 
‖ z z z ‖ 1 + 

C 

2 

‖ z z z − ˆ d d d + d d d 
t + d d d 

r ‖ 

2 
2 

+ 

C 

2 

M ∑ 

i =1 

(
d t i 

2 − ‖ p p p − t t t i ‖ 

2 
2 

)2 

+ 

C 

2 

N ∑ 

j=1 

(
d r j 

2 − ‖ p p p − r r r j ‖ 

2 
2 

)2 
, (37a) 
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s.t. z z z = 

ˆ d d d − d d d 
t − d d d 

r 
, (37b)

d t i 
2 = ‖ p p p − t t t i ‖ 

2 
2 , i = 1 , . . . , M, (37c)

d r j 
2 = ‖ p p p − r r r j ‖ 

2 
2 , j = 1 , . . . , N, (37d)

where C > 0 is a constant. 

The Lagrangian of (37) is given by 

L ( x x x , α, β, λ) 

= ‖ z z z ‖ 1 + αT ( z z z − ˆ d d d + d d d 
t + d d d 

r 
) 

+ 

M ∑ 

i =1 

βi 

(
d t i 

2 − ‖ p p p − t t t i ‖ 

2 
2 

)
+ 

N ∑ 

j=1 

λ j 

(
d r j 

2 − ‖ p p p − r r r j ‖ 

2 
2 

)

+ 

C 

2 

( 

M ∑ 

i =1 

(
d t i 

2 − ‖ p p p − t t t i ‖ 

2 
2 

)2 

+ 

N ∑ 

j=1 

(
d r j 

2 − ‖ p p p − r r r j ‖ 

2 
2 

)2 

) 

+ 

C 

2 

‖ z z z − ˆ d d d + d d d 
t + d d d 

r ‖ 

2 
2 (38)

According to the LCA, we introduce internal variables u u u =
[ u 1 , . . . , u MN ] 

T for z z z . The relationship between u u u and z z z is given by

z l = T τ (u l ) = 

{
0 , | u l | ≤ τ, 

u l − τ sign (u l ) , | u l | > τ, 
(39)

where l = 1 , . . . , MN. For simplicity, we set τ to 1 in our formula-

tion. Note that according to the definition of sub-differential, we

have 

 

 u − z z z ∈ τ∂‖ z z z ‖ 1 . (40)

Combining the dynamics of the LPNN in (10) with the concept

of LCA in (40) , we deduce that: 

d u 

u u 

dt 
= −∂L ( x x x , α, β, λ) 

= −u 

u u + z z z − α − C 

(
z z z − ˆ d d d + d d d 

t + d d d 
r 
)
, (41)

d d t 
i 

dt 
= −∂L ( x x x , α, β, λ) 

∂d t 
i 

= −
N ∑ 

j=1 

αi +( j−1) M 

− 2 βi d 
t 
i − C 

N ∑ 

j=1 

(
z i +( j−1) M 

− ˆ d i, j + d t i + d r j 

)

−2 Cd t i 

(
d t i 

2 − ‖ p p p − t t t i ‖ 

2 
2 

)
, (42)

d d r 
j 

dt 
= −∂L ( x x x , α, β, λ) 

∂d r 
j 

= −
M ∑ 

i =1 

αi +( j−1) M 

− 2 λ j d 
r 
j − C 

M ∑ 

i =1 

(
z i +( j−1) M 

− ˆ d i, j + d t i + d r j 

)
−2 Cd r j 

(
d r j 

2 − ‖ p p p − r r r j ‖ 

2 
2 

)
, (43)

d p p p 

dt 
= −∂L ( x x x , α, β, λ) 

∂ p p p 

= 

M ∑ 

i =1 

2 βi ( p p p − t t t i ) + 

N ∑ 

j=1 

2 λ j 

(
p p p − r r r j 

)

+2 C 

M ∑ 

i =1 

( p p p − t t t i ) 

(
d t i 

2 − ‖ p p p − t t t i ‖ 

2 
2 

)

+2 C 

N ∑ 

j=1 

(
p p p − r r r j 

)(
d r j 

2 − ‖ p p p − r r r j ‖ 

2 
2 

)
, (44)
d α

dt 
= 

∂L ( x x x , α, β, λ) 

∂ α

= z z z − ˆ d d d + d d d 
t + d d d 

r 
, (45)

dβi 

dt 
= 

∂L ( x x x , α, β, λ) 

∂βi 

= d t i 
2 − ‖ p p p − t t t i ‖ 

2 
2 , (46)

dλ j 

dt 
= 

∂L ( x x x , α, β, λ) 

∂λ j 

= d r j 
2 − ‖ p p p − r r r j ‖ 

2 
2 . (47)

n this formulation, there are MN + M + N + 2 variable neurons to

old the MM + M + N + 2 decision variables and MN + M + N La-

rangian neurons for the MN + M + N Lagrangian variables. 

Two typical examples of the dynamics of the proposed al-

orithms are given in Figs. 3 and 4 . The setting is described

n Section 5 .B. It is seen that both networks can settle down

n around 50 characteristic times. According to the analysis in

ection 4 , our proposed algorithms are locally stable. Hence, start-

ng from a random state, the dynamics fluctuate during the tran-

ient state and finally reach a stable state. 

. Local stability of proposed algorithms 

In the analog network approach, one important aspect is the

tability of the proposed algorithms. Since the constraints are not

onvex, we cannot investigate the global stability. Instead, we show

he local stability. Local stability means that a local minimum point

f the constrained optimization problem should be a stable point

f the dynamics. Note that if a local minimum is not a stable point,

he network will not converge to this minimum point. According to

heorem 1 in [39] , local stability is guaranteed under two sufficient

onditions. They are 

– The convexity of the Lagrangian, i.e., the Hessian matrix of

the Lagrangian (with respect to the decision variables) at a

local minimum point should be positive definite. 

– The gradient vectors of the constraints with respect to the

decision variable vector at the local minimum point should

be linearly independent. 

For our proposed algorithms, the first condition has been

chieved by introducing the augmented terms. That means, with

he use of a sufficiently large C , the Hessian matrix is positive def-

nite under mild conditions [15,39,41–43] . Then we only need to

how that the gradient vectors of the constraints at the local min-

mum are linear independent. 

.1. � 1 -norm LPNN algorithm 

For the � 1 -norm LPNN algorithm, let x x x be the collection

f all decision variables, i.e., x x x = 

[
p p p T , d t 

1 
, . . . , d t 

M 

, d r 1 , . . . , d 
r 
N 

]T 
. Let

 x x x ∗, β∗
, λ∗} be a local minimum of the constrained optimization

roblem. The second condition is that the gradient vectors of

he constraints with respect to x x x should be linearly indepen-

ent at x x x ∗. In our case, there are M + N constraints as stated

n (28b) and (28c) . Denote h i as the i th constraint. The constraints

an be rearranged as 

 i ( x x x ) = d t i 
2 − ‖ p p p − t t t i ‖ 

2 
2 , (48)

 M+ j ( x x x ) = d r j 
2 − ‖ p p p − r r r j ‖ 

2 
2 , (49)

here i = 1 , . . . , M and j = 1 , . . . , N. The gradient vectors of these

onstraints at x x x ∗ are given by 
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Fig. 3. Dynamics of estimated parameters of � 1 -norm LPNN approach when the variance of Gaussian noise is 100 (m 

2 ). The true target position is [ −20 0 0 , 10 0 0] T . (a) p p p ; (b) 

d t 1 , . . . , d 
t 
4 ; (c) d r 1 , . . . , d 

r 
4 ; (d) β1 , . . . , β4 ; (e) λ1 , . . . , λ4 . 
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∂h i ( x x x ) 

∂ x x x 

∣∣∣
x x x = x x x ∗

= 2 

[
( t t t i − p p p ∗) T , 0 1 ×(i −1) , d 

t 
i 

∗
, 0 1 ×(M−i ) , 0 1 ×N 

]T 
, 

i = 1 , . . . , M , (50) 

∂h M+ j ( x x x ) 

∂ x x x 

∣∣∣
x x x = x x x ∗

= 2 

[
( r r r j − p p p ∗) T , 0 1 ×M 

, 0 1 ×( j−1) , d 
r 
j 
∗
, 0 1 ×(N− j) 

]T 
, 

j = 1 , . . . , N . (51) 

From (50) and (51) , we can obtain the following matrix [
∂h 1 ( x x x ∗) 

∂ x x x 
, . . . , 

∂h M ( x x x ∗) 
∂ x x x 

, 
∂h M+1 ( x x x ∗) 

∂ x x x 
, . . . , 

∂h M+ N ( x x x ∗) 
∂ x x x 

]
= 

⎡ 

⎣ 

2 [ t t t 1 − p p p ∗, . . . , t t t M 

− p p p ∗] 2 [ r r r 1 − p p p ∗, . . . , r r r N − p p p ∗] 

2 diag ( d t 1 
∗
, . . . , d t M 

∗
) 0 M×N 

0 N×M 

2 diag ( d r 1 
∗
, . . . , d r N 

∗
) 

⎤ 

⎦ . (52) 

n general, the transmitter and receiver positions are different

rom the target position. That is, all { d t 
i 

∗} and { d r 
j 
∗} are not

qual to 0. Thus, it is clear that the gradient vectors of equali-

ies (48) and (49) are linear independent at x x x ∗. Hence the gradient

ectors of the constraints of � 1 -norm LPNN algorithm satisfy the

inear independence condition. The dynamics of the � 1 -norm LPNN

lgorithm around a minimum point are locally stable. 

.2. � 1 -norm LPNN-LCA algorithm 

For the � 1 -norm LPNN-LCA algorithm, the proof is

imilar to that of the � 1 -norm LPNN algorithm. Let x x x =
p p p T , u u u T , d t 

1 
, . . . , d t 

M 

, d r 
1 
, . . . , d r 

N 

]T 
be the collection of decision 

ariables. Let { x x x ∗, α∗, β∗
, λ∗} be a local minimum of the problem.

e need to show that, at the minimum point x x x ∗, the gradient

ectors of constraints with respect to x x x are linearly independent.

n the second algorithm, we have MN + M + N constraints, namely,
 i +( j−1) M 

( x x x ) = z i +( j−1) M 

− ˆ d i, j + d t i + d r j , (53)

 MN+ i ( x x x ) = d t i 
2 − ‖ p p p − t t t i ‖ 

2 
2 , (54)

 M N+ M + j ( x x x ) = d r j 
2 − ‖ p p p − r r r j ‖ 

2 
2 , (55)

here i = 1 , . . . , M and j = 1 , . . . , N. We assume that z i 
 = 0, i.e.,

ll data points are influenced by noise. Hence according to (13) ,

e have 
∂z l 
∂u l 

= 1 for ∀ l = 1 , . . . , MN. Therefore, we obtain 

∂h l 
∂u l 

=
∂h l 
∂z l 

∂z l 
∂u l 

= 1 . Then the gradient vectors of the constraints (53) are

iven by 

∂h i +( j−1) M 

( x x x ) 

∂ x x x 

∣∣∣
x x x = x x x ∗

= 

[
0 1 ×2 , 0 1 ×( j−1) M 

, 0 1 ×(i −1) , 1 , 0 1 ×(M−i ) , 0 1 ×M(N− j) , 

0 1 ×(i −1) , 1 , 0 1 ×(M−i ) , 0 1 ×( j−1) , 1 , 0 1 ×(N− j) 

]T 

for i = 1 , . . . , M and j = 1 , . . . , N . (56) 

n addition, the gradient vectors of the con-

traints (54) and (55) are given by: 

∂h MN+ i ( x x x ) 

∂ x x x 

∣∣∣
x x x = x x x ∗

= 2 

[
( t t t i − p p p ∗) T , 0 1 ×MN , 0 1 ×(i −1) , d 

t 
i 

∗
, 0 1 ×(M−i ) , 0 1 ×N 

]T 

for i = 1 , . . . , M . (57) 

∂h M N+ M + j ( x x x ∗) 
∂ x x x 

∣∣∣
x x x = x x x ∗

= 2 

[
( r r r j − p p p ∗) T , 0 1 ×MN , 0 1 ×M 

, 0 1 ×( j−1) , d 
t 
j 

∗
, 0 1 ×(N− j) 

]T 

for j = 1 , . . . , N . (58) 

From (56) , (57) , and (58) , we obtain (59) . 
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Fig. 4. Dynamics of estimated parameters of � 1 -norm LPNN-LCA approach when the variance of Gaussian noise is 100 (m 

2 ). The true target position is at [ −20 0 0 , 10 0 0] T 

(m). (a) p p p ; (b) u u u ; (c) z z z ; (d) d t 1 , . . . , d 
t 
4 ; (e) d r 1 , . . . , d 

r 
4 ; (f) α1 , . . . , α16 ; (g) β1 , . . . , β4 ; (h) λ1 , . . . , λ4 . 

AA
+ M +1

∂ x x x 
 

AA

 

r r r 1 −

 diag

 

 

 

 

 

AA  

 

 

w

∑
 

F

I  
 

 A � 

[
∂h 1 ( x x x ∗) 

∂ x x x 
, . . . , 

∂h MN ( x x x ∗) 
∂ x x x 

, 
∂h MN+1 ( x x x ∗) 

∂ x x x 
, . . . , 

∂h MN+ M 

( x x x ∗) 
∂ x x x 

, 
∂h M N

It can be rewritten as 

 

 A � 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 2 ×MN 2 [ t t t 1 − p p p ∗, . . . , t t t M 

− p p p ∗] 2 [

I MN 0 MN×M 

I M 

, . . . , I M 

2 diag ( d t 1 
∗
, . . . , d t M 

∗
) [

1 1 ×M 

0 (N−1) ×M 

]
, . . . , 

[
0 (N−1) ×M 

1 1 ×M 

]
0 N×M 

2

It can be seen that the first MN columns in (60) are linear in-

dependent. Moreover, all { d t 
i 

∗} and { d r 
j 
∗} are not equal to 0. Hence

the last M + N columns are also linear independent. 

The proof is based on contradiction. Assume that all the

MN + M + N columns are linear dependent. That is, there are

ϕ 1 , . . . , ϕ M N+ M + N which are not all zero, such that 

 

 A ϕ = 0 (2+ M N+ M + N) ×1 , (61)

where ϕ = [ ϕ 1 , . . . , ϕ M N+ M + N ] T . After rearrangement, the above lin-

ear system can be written as follows. For the first two rows in (61) ,
 

( x x x ∗) 
, . . . , 

∂h M N+ M + N ( x x x ∗) 
∂ x x x 

]
. (59)

p p p ∗, . . . , r r r N − p p p ∗] 

0 MN×M 

0 M×N 

 ( d r 1 
∗
, . . . , d r N 

∗
) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (60)

e have 

M 

 

i =1 

2 ϕ MN+ i ( t t t i − p p p ∗) + 

N ∑ 

j=1 

2 ϕ M N+ M + j ( r r r j − p p p ∗) = 0 2 ×1 . (62)

rom the third row to the (MN + 2) rows in (61) , we have 

 MN [ ϕ 1 , . . . , ϕ MN ] 
T = 0 MN×1 . (63)
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Fig. 5. Configuration of M = N = 4 . 

Fig. 6. RMSE of different algorithms in Gaussian noise environment. 
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rom the (MN + 3) th row to the (MN + M + 2) th rows in (61) , 

 ϕ MN+ i d t i 
∗ + 

N ∑ 

j=1 

ϕ ( j−1) M+ i = 0 , for i = 1 , . . . , M . (64)

rom the (MN + M + 3) th row to the (MN + M + N) th rows in (61) ,

 ϕ M N+ M + j d r j 
∗ + 

M ∑ 

i =1 

ϕ ( j−1) M+ i + = 0 , for j = 1 , . . . , N . (65)

rom (63) , ϕ 1 , . . . , ϕ MN are equal to zero. Substituting ϕ ( j−1) M+ i =
 , j = 1 , . . . , N into (64) , we obtain 2 ϕ MN+ i d t i 

∗ = 0 for i = 1 , . . . , M.

ince d t 
i 

∗ 
 = 0 , we can deduce that ϕ MN+ i = 0 for i = 1 , . . . , M.

n a similar way, ϕ M N+ M + j = 0 for j = 1 , . . . , N can be obtained

rom (65) . Therefore, ϕ is a zero vector. That leads to a contra-

iction. Hence, all the MN + M + N columns of A 

A A cannot be linear

ependent. We conclude that the gradient vectors in (60) are lin-

ar independent and the dynamics of � 1 -norm LPNN-LCA algorithm

round a minimum point are stable. 

. Simulation 

This section compares our algorithms with the target local-

zation algorithms in [15] and [37] . The former is also based on

he LPNN framework, but it assumes that the noise follows Gaus-

ian distribution and uses the � 2 -norm in its objective function.

he latter one is a robust target localization algorithm for MIMO

adar system. It introduces the MCC [38] into the conventional ML

ethod to deal with outliers, and applies half-quadratic optimiza-

ion technique to handle the corresponding nonconvex nonlinear

unction. We refer them to as � 2 -norm LPNN algorithm and MCC

lgorithm, respectively. 

The MCC method is a numerical method. Its complexity at each

teration is O((M + N) 4 . 5 log 1 ε + 6 MN) [37] , where ε = 2 . 22 −8 . The

PNN framework is an analog approach. It may not be appropri-

te to compare the complexity between the MCC method and the

hree LPNN approaches. However, in the LPNN framework, the cir-

uit complexity is mainly determined by the complexity for com-

uting the derivatives. The complexity of the � 2 -norm LPNN al-

orithm is O(12 M + 12 N) . The complexities of the � 1 -norm LPNN

nd the � 1 -norm LPNN-LCA are O(11 M + 11 N + MN) and O(12 M +
2 N + MN) , respectively. Thus, for each iteration, the LPNN based

pproaches have lower complexity than the MCC. 

In our MIMO radar localization system, there are

 transmitters and 4 receivers, i.e., M = N = 4 . They

re at t t t 1 = [ −50 0 0 , 60 0 0] T (m), t t t 2 = [0 , −750 0] T (m), t t t 3 =
1050 0 , 0] T (m), t t t 4 = [60 0 0 , 40 0 0] T (m), r r r 1 = [ −10 0 0 0 , −60 0 0] T (m),

 

 

 2 = [ −90 0 0 , 50 0 0] T (m), r r r 3 = [0 , 420 0] T (m), and r r r 4 =
640 0 , −80 0 0] T (m). The true position of the target is

p p p = [ −20 0 0 , 10 0 0] T (m). The geometry of transmitters, receivers

nd target is shown in Fig. 5 . 

For the proposed algorithms, we set C = 20 . For � 1 -norm

PNN method, we set γ = 50 in (27) . The initial values of vari-

bles p p p , z z z , d t 
i 
(i = 1 , . . . , M) , d r 

j 
( j = 1 , . . . , N) , α = [ α1 , . . . , αMN ] ,

= [ β1 , . . . , βM 

] , and λ = [ λ1 , . . . , λN ] are randomly generated. 

.1. Experiment 1: target localization in Gaussian noise 

In this subsection, we study the root mean squared error

RMSE) performance of the proposed algorithms under Gaussian

oise environment without introducing any outliers. The standard

eviation of the Gaussian noise varies from 1 (m) to 10 2 (m). For

ach noise level, we repeat the experiment 100 times. We mea-

ure the RMSE between the true target position and the estimated

osition at each noise level. The results are shown in Fig. 6 . 
In Fig. 6 , we also plot the Cram ́e r-Rao lower bound (CRLB),

hich denotes the minimum variance bound. It can be seen that

he performance of our two robust algorithms is close to the CRLB

n Gaussian noise environment. They are better than the robust

CC algorithm and are slightly inferior to the � 2 -norm LPNN al-

orithm, which is based on the Gaussian noise model. 

.2. Experiment 2: Target localization in Gaussian noise with NLOS 

utliers 

In this subsection, we fix the variance of Gaussian noise to

00 (m 

2 ), and introduce outliers into the range measurements.

e assume that there exists NLOS propagation between a trans-

itter and the target or between the target and a receiver. Thus

ll measurements associated with this transmitter or receiver in-

lude NLOS outliers [33,34] . NLOS outliers are positive and are

enerated by the exponential distribution in the following ex-

eriments. When NLOS happens, the noisy range measurements

re always larger than the true values. The standard deviation of

he exponential distribution (outlier level) is varied from 10 1 (m)

o 10 4 (m). 
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Fig. 7. RMSE of different algorithms with M = N = 4 . In this experiment, one trans- 

mitter or one receiver corresponds to NLOS propagation. 

Fig. 8. RMSE of different algorithms with M = N = 4 . In this experiment, one trans- 

mitter and one receiver correspond to NLOS propagation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Configuration of M = N = 5 . 

Fig. 10. RMSE of different algorithms with M = N = 5 . In this experiment, one 

transmitter and one receiver correspond to NLOS propagation. 
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Case 1: 

We randomly choose one of the transmitters or receivers and

add NLOS outliers into its relevant measured values. In other

words, in the 4 × 4 range measurement matrix, there is one col-

umn or row influenced by NLOS outliers, i.e., 4 range measure-

ments are highly distorted. We repeat the experiment 100 times

at each outlier level. We measure the RMSE between the true tar-

get position and the estimated position and the results are shown

in Fig. 7 . It can be seen that the error curves of our algorithms are

lower than those of the two existing algorithms. Also, as the out-

lier level approaches 10 3.5 (m), the MCC algorithm breaks down

but our algorithms do not. 

Case 2: 

In this case, we demonstrate that if there are too many out-

liers, all algorithms cannot give satisfactory results. The settings

are similar to those of Case 1, except that we randomly choose one

transmitter and one receiver, and then add NLOS outliers into their

relevant measurements. Thus, there are 7 elements influenced by

outliers in the 4 × 4 measurement matrix. The RMSE results are
hown in Fig. 8 . It can be seen that due to the high proportion of

utliers, all the algorithms cannot give satisfactory results. 

Case 3: 

In this case, we further add one transmitter at t t t 5 =
 −60 0 0 , −50 0 0] T (m) and one receiver at r r r 5 = [80 0 0 , 60 0] T (m) into

he system given by Fig. 5 . The new geometry of transmitters and

eceivers is depicted in Fig. 9 . We randomly choose one transmit-

er and one receiver, and then add NLOS outliers into their relevant

easurements. There are 9 elements influenced by outliers in the

 × 5 measurement matrix. The RMSE results are shown in Fig. 10 .

e can see that the � 2 -norm LPNN and the MCC are sensitive to

he outliers. However, the performance of our proposed algorithms

s insensitive to different outlier levels. 

In summary, our proposed algorithms can give better localiza-

ion results under NLOS measurements. The localization accuracy

f the � 1 -norm LPNN-LCA algorithm is higher than that of the � 1 -

orm LPNN. However, there are M + N + 2 variable neurons and

 + N Lagrangian neurons in the � 1 -norm LPNN algorithm, while

here are MN + M + N + 2 variable neurons and MN + M + N La-

rangian neurons in the � -norm LPNN-LCA algorithm. 
1 
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Fig. 11. RMSE of different algorithms with M = N = 4 . In this experiment, 5 range 

measurements ˆ d 1 , 2 , ˆ d 1 , 4 , ˆ d 2 , 3 , ˆ d 3 , 4 , and ˆ d 4 , 1 are influenced by SINR outliers. 
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Table 1 

Numbers of cases that fulfil the assumptions in Theorem 1 . 

Experiment Noise � 1 -norm LPNN � 1 -norm LPNN-LCA 

Section 5 .A Gaussian 500/500 500/500 

Section 5 .B Case 1 NLOS 700/700 700/700 

Section 5 .B Case 1 NLOS 692/700 693/700 

Section 5 .B Case 3 NLOS 700/700 700/700 

Section 5 .C SINR 394/700 394/700 

Table 2 

Numbers of cases that fulfill the assumptions for Section 5 .B Case 2 . 

Method \ Noise level 10 1 10 1.5 10 2 10 2.5 10 3 10 3.5 10 4 

� 1 -norm LPNN 100 100 100 100 100 99 93 

� 1 -norm LPNN-LCA 100 100 100 100 100 99 94 
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.3. Experiment 3: Target localization in Gaussian noise with SINR 

utliers 

In the third experiment, we evaluate the performance of our

roposed algorithms under low signal-to-interference-noise ratio

SINR) environment. This experiment is implemented based on the

IMO radar system given by Fig. 5 . First, we set the variance of

aussian noise to 100 (m 

2 ) and introduce outliers, which are gen-

rated to model the low SINR environment. SINR outliers can be

ither positive or negative values and are generated by the Laplace

istribution. When SINR happens, the noisy range measurements

an be larger or smaller than the true values. 

Assume that 5 measurement values ˆ d 1 , 2 , ˆ d 1 , 4 , ˆ d 2 , 3 , ˆ d 3 , 4 , and
ˆ 
 4 , 1 are influenced by SINR outliers. The standard deviation of the

aplace distribution ranges from 2 × 10 2 (m) to 2 × 10 5 (m). At

ach outlier level, we repeat the experiment 100 times. The RMSE

esults are shown in Fig. 11 . It can be seen that under the low

INR environments, the performance of our proposed algorithms

s also better that of the two existing algorithms. In addition, the

erformance of the � 1 -norm LPNN-LCA is the best. 

Here we use the same radar configuration used in

ection 5 .B Case 2. However, the proposed algorithms fail to

ocate the target under NLOS situation shown in Fig. 8 . On the

ontrary, they have higher localization accuracy under SINR situ-

tion shown in Fig. 9 . One reason is that the number of outliers

s reduced from 7 to 5 in the 4 × 4 measurement matrix. In

ddition, when NLOS happens to one transmitter or receiver, all

easurements related to the corresponding transmitter or receiver

re distorted. The information of the target position provided

y the corresponding transmitter or receiver is totally broken.

nlike NLOS situation, SINR only influences part of the measure-

ents provided by the corresponding transmitter or receiver. In

ther words, position information of the target provided by the

orresponding transmitter or receiver is preserved. Hence, our

pproaches have higher localization accuracy under SINR outlier

ituation with the configuration of M = N = 4 in our experiments. 

.4. Checking of Theorem 1 

In Theorem 1 , there are two assumptions. The first assump-

ion is that d t 
i 

∗ ≥ 0 and d r 
j 
∗ ≥ 0 for all i and j . The second is that

ˆ 
 i, j ≥ d t 

i 

∗
and 

ˆ d i, j ≥ d r 
j 
∗

for all i and j . In this subsection, we re-

ort the number of cases that satisfy the two assumptions stated
n Theorem 1 in our simulation. For each experiment, we consider

everal noise levels, and for each noise level we run the simulation

00 times. Table 1 summarizes the numbers of cases that satisfy

he two assumptions. 

For Experiment 1 (Gaussian noise in Section 5 .A), we consider

ve noise levels, and hence there are 500 runs for each algorithm.

he numbers of cases that satisfy the assumptions are reported in

he first row of Table 1 . From this row, for the Gaussian noise situ-

tion in Section 5 .A, there is no violation case for the assumptions

n our simulation. 

For Experiment 2 (NLOS with M = N = 4 and one outlier in

ection 5 .B Case 1) we consider seven noise levels and hence there

re 700 runs for each algorithm. The numbers of cases that satisfy

he assumptions are reported in the second row of Table 1 . From

his row, for Section 5 .B Case 1, there is no violation case for the

ssumptions in our simulation. 

For Experiment 2 (NLOS with M = N = 4 and two outliers in

ection 5 .B Case 2) we consider seven noise levels, and hence there

re 700 runs for each algorithm. The numbers of cases that satisfy

he two assumptions are reported in the third row of Table 1 . From

his row, for Section 5 .B Case 2, there are a few cases that do not

ulfil the assumptions. Table 2 shows the numbers of fulfilled cases

or each noise level. From the table, those cases that do not meet

he assumptions appear in high noise levels. 

For Experiment 2 (NLOS with M = N = 5 and two outliers in

ection 5 .B Case 3), we consider seven noise levels, and hence

here are 700 runs for each algorithm. The numbers of cases that

atisfy the assumptions are reported in the fourth row of Table 1 .

rom this row, for Section 5 .B Case 3, there is no violation case. 

For Experiment 3 (SINR noise with M = N = 4 and five out-

iers in Section 5 .C Case 2) we consider seven noise levels, and

ence there are 700 runs for each algorithm. The numbers of cases

hat satisfy the two assumptions are reported in the fifth row of

able 1 . From this row, for Section 5 .C, there are around 42% cases

hat do not fulfil the assumptions. Table 3 shows the numbers of

ulfilled cases for each noise level. From the table, those cases that

o not meet the assumptions appear in high noise levels. Although

he numbers of cases that do not fulfil is a bit high for high noise

evels, the errors in the estimated positions are still very small

compared to the other two algorithms), as shown in Fig. 11 . 

According to Tables 1–3 , our assumptions tend to hold for Gaus-

ian noise and NLOS outliers. In particular, even NLOS propagation

appens to two transmitter/receiver in the radar configuration of

 = N = 4 , i.e., Case 2 of Section 5 .B, our assumptions still hold for

ost cases. Unfortunately, when SINR outliers are with large noise

evels, it is less likely that our assumptions hold. This is because

he SINR noise is of Laplace distribution. When the noise level is

igh, it may be with a large negative value. However, the errors in

he estimated positions are still very small (compared to the other

wo algorithms), as shown in Fig. 11 . 
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Table 3 

Numbers of cases that fulfill the assumptions for Section 5 .C. 

Method \ Noise level 2 × 10 2 2 × 10 2.5 2 × 10 3 2 × 10 3.5 2 × 10 4 2 × 10 4.5 2 × 10 5 

� 1 -norm LPNN 100 100 99 67 21 6 1 

� 1 -norm LPNN-LCA 100 100 99 67 21 6 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

In this paper, we proposed two algorithms for robust target lo-

calization problem in a distributed MIMO radar system. To alleviate

the influence of outliers, we formulated the target localization as a

constrained optimization problem with an � 1 -norm objective. The

two proposed algorithms are based on the concept of LPNN. Since

the objective function is non-differentiable, two strategies are uti-

lized for solving this problem. In the first method, we use a dif-

ferentiable function to approximate the � 1 -norm in the objective

function. While in the second method, we utilize the LCA concept

to solve the non-differentiable problem of � 1 -norm. In addition, the

augmented term concept is introduced to make the network more

stable for both approaches. We showed that the dynamics of the

proposed algorithms are locally stable. Through numerical experi-

ments, we investigated the robustness of the proposed techniques

under the impact of outliers. Simulation results showed that the

proposed methods can effectively reduce the influence of outliers

and are superior to two state-of-the-art MIMO radar target local-

ization algorithms. The � 1 -norm LPNN-LCA algorithm is superior to

the � 1 -norm LPNN algorithm in terms of estimation performance

but more neurons, implying higher complexities, are needed. 

One of the future directions is to consider the Huber-norm

[36] which can address both the noise and outliers. When we use

the Huber-norm to formulate a robust model, it should be noted

that this norm is also only first-order differentiable. Hence, the

LPNN framework cannot be directly utilized to solve the Huber-

norm based formulation. After approximating the Huber-norm by

the pseudo-Huber loss [46] , the resultant model can be tackled by

LPNN. It is worth pointing out that prior knowledge of the noise

and outliers as well as a threshold parameter are needed. However,

these key factors for robust localization are difficult to determine

in real situations. 

Declaration of Competing Interest 

The authors declare that they do not have any financial or non-

financial conflict of interests 

CRediT authorship contribution statement 

Zhanglei Shi: Writing - original draft, Visualization, Methodol-

ogy, Software. Hao Wang: Investigation, Validation. Chi Shing Le-

ung: Conceptualization, Methodology, Supervision, Project admin-

istration. Hing Cheung So: Writing - review & editing. 

Acknowledgments 

The work described in this paper was fully supported by a grant

from City University of Hong Kong (Project No. 9610431 ). 

References 

[1] H. Godrich , A.M. Haimovich , R.S. Blum , Target localization accuracy gain in

MIMO radar-based systems, IEEE Trans. Inf. Theory 56 (6) (2010) 2783–2803 . 

[2] M. Dianat , M.R. Taban , J. Dianat , V. Sedighi , Target localization using least
squares estimation for MIMO radars with widely separated antennas, IEEE

Trans. Aerosp. Electron. Syst. 49 (4) (2013) 2730–2741 . 
[3] A.M. Haimovich , R.S. Blum , L.J. Cimini , MIMO radar with widely separated an-

tennas, IEEE Signal Process. Mag. 25 (1) (2007) 116–129 . 
[4] J. Li , P. Stoica , MIMO radar with colocated antennas, IEEE Signal Process. Mag.

24 (5) (2007) 106–114 . 
[5] R. Amiri , H. Zamani , F. Behnia , F. Marvasti , Sparsity-aware target localization

using TDOA/AOA measurements in distributed MIMO radars, Ict Express 2 (1)

(2016) 23–27 . 
[6] O. Bar-Shalom , A.J. Weiss , Direct positioning of stationary targets using MIMO

radar, Signal Process. 91 (10) (2011) 2345–2358 . 
[7] L. Rui , K. Ho , Elliptic localization: performance study and optimum receiver

placement, IEEE Trans. Signal Process. 62 (18) (2014) 4673–4688 . 
[8] Y. Huang , J. Benesty , G.W. Elko , R.M. Mersereati , Real-time passive source local-

ization: a practical linear-correction least-squares approach, IEEE Trans. Speech

Audio Process. 9 (8) (2001) 943–956 . 
[9] K.W. Cheung , H.C. So , W.-K. Ma , Y.T. Chan , A constrained least squares ap-

proach to mobile positioning: algorithms and optimality, EURASIP J. Adv. Signal
Process. 2006 (1) (2006) 1–23 . 

[10] H.C. So , Source localization: algorithms and analysis, in: Handbook of Position
Location: Theory, Practice, and Advances, 2011, pp. 25–66 . 

[11] M. Einemo , H.C. So , Weighted least squares algorithm for target localization in
distributed MIMO radar, Signal Process. 115 (2015) 144–150 . 

[12] C.-H. Park , J.-H. Chang , Closed-form localization for distributed MIMO radar

systems using time delay measurements, IEEE Trans. Wirel. Commun. 15 (2)
(2015) 1480–1490 . 

[13] R. Amiri , F. Behnia , H. Zamani , Asymptotically efficient target localization from
bistatic range measurements in distributed MIMO radars, IEEE Signal Process.

Lett. 24 (3) (2017) 299–303 . 
[14] A . Noroozi , A .H. Oveis , M.A . Sebt , Iterative target localization in distributed

MIMO radar from bistatic range measurements, IEEE Signal Process. Lett. 24

(11) (2017) 1709–1713 . 
[15] J. Liang , C.S. Leung , H.C. So , Lagrange programming neural network approach

for target localization in distributed MIMO radar, IEEE Trans. Signal Process. 64
(6) (2016) 1574–1585 . 

[16] J. Liang , Y. Chen , H.C. So , Y. Jing , Circular/hyperbolic/elliptic localization via eu-
clidean norm elimination, Signal Process. 148 (2018) 102–113 . 

[17] R. Amiri , F. Behnia , An efficient weighted least squares estimator for elliptic

localization in distributed MIMO radars, IEEE Signal Process. Lett. 24 (6) (2017)
902–906 . 

[18] R. Amiri , F. Behnia , M.A.M. Sadr , Exact solution for elliptic localization in
distributed MIMO radar systems, IEEE Trans. Veh. Technol. 67 (2) (2017)

1075–1086 . 
[19] R. Amiri , F. Behnia , A. Noroozi , Efficient algebraic solution for elliptic target lo-

calisation and antenna position refinement in multiple-input–multiple-output

radars, IET Radar, Sonar Navig. 13 (11) (2019) 2046–2054 . 
[20] R. Amiri , S.A.R. Kazemi , F. Behnia , A. Noroozi , Efficient elliptic localization in

the presence of antenna position uncertainties and clock parameter imperfec-
tions, IEEE Trans. Veh. Technol. 68 (10) (2019) 9797–9805 . 

[21] R. Amiri , F. Behnia , H. Zamani , Efficient 3-D positioning using time-delay and
AOA measurements in MIMO radar systems, IEEE Commun. Lett. 21 (12) (2017)

2614–2617 . 

[22] S.A.R. Kazemi , R. Amiri , F. Behnia , Efficient convex solution for 3-D localiza-
tion in MIMO radars using delay and angle measurements, IEEE Commun. Lett.

(2019) . 
[23] R. Amiri , F. Behnia , M.A.M. Sadr , Efficient positioning in MIMO radars with

widely separated antennas, IEEE Commun. Lett. 21 (7) (2017) 1569–1572 . 
[24] Y. Du , P. Wei , An explicit solution for target localization in noncoherent

distributed MIMO radar systems, IEEE Signal Process. Lett. 21 (9) (2014)

1093–1097 . 
[25] R. Amiri , F. Behnia , M.A.M. Sadr , Positioning in MIMO radars based on

constrained least squares estimation, IEEE Commun. Lett. 21 (10) (2017)
2222–2225 . 

[26] H. Yang , J. Chun , An improved algebraic solution for moving target localization
in noncoherent MIMO radar systems, IEEE Trans. Signal Process. 64 (1) (2015)

258–270 . 
[27] A . Noroozi , M.A . Sebt , A .H. Oveis , Efficient weighted least squares estimator for

moving target localization in distributed MIMO radar with location uncertain-

ties, IEEE Syst. J. (2019) . 
[28] R. Amiri , F. Behnia , H. Zamani , Closed-Form positioning in MIMO radars with

antenna location uncertainties, IET Radar Sonar Navig. (2019) . 
[29] H. Song , G. Wen , L. Zhu , D. Li , A novel TSWLS method for moving target local-

ization in distributed MIMO radar systems, IEEE Commun. Lett. (2019) . 
[30] H. Song , G. Wen , L. Zhu , An approximately efficient estimator for moving target

localization in distributed MIMO radar systems in presence of sensor location

errors, IEEE Sens. J. (2019) . 
[31] R. Amiri , F. Behnia , A. Noroozi , Efficient joint moving target and antenna local-

ization in distributed MIMO radars, IEEE Trans. Wirel. Commun. 18 (9) (2019)
4 425–4 435 . 

https://doi.org/10.13039/100007567
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0001
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0001
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0001
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0001
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0002
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0002
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0002
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0002
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0002
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0003
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0003
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0003
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0003
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0004
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0004
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0004
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0005
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0005
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0005
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0005
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0005
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0006
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0006
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0006
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0007
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0007
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0007
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0008
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0008
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0008
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0008
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0008
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0009
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0009
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0009
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0009
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0009
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0010
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0010
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0011
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0011
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0011
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0012
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0012
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0012
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0013
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0013
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0013
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0013
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0014
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0014
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0014
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0014
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0015
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0015
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0015
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0015
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0016
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0016
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0016
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0016
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0016
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0017
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0017
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0017
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0018
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0018
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0018
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0018
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0019
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0019
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0019
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0019
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0020
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0020
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0020
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0020
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0020
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0021
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0021
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0021
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0021
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0022
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0022
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0022
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0022
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0023
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0023
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0023
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0023
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0024
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0024
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0024
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0025
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0025
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0025
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0025
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0026
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0026
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0026
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0027
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0027
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0027
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0027
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0028
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0028
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0028
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0028
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0029
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0029
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0029
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0029
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0029
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0030
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0030
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0030
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0030
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0031
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0031
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0031
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0031


Z. Shi, H. Wang and C.S. Leung et al. / Signal Processing 174 (2020) 107574 13 

[  

 

 

[  

 

 

[  

 

 

 

[  

 

[  

[  

 

 

[  

 

[  

 

[  

 

[  

[  

 

32] F. Zhang , Y. Sun , J. Zou , D. Zhang , Q. Wan , Closed-form localization method for
moving target in passive multistatic radar network, IEEE Sens. J. (2019) . 

[33] J. Nouvel , M. Lesturgie , Study of NLOS detection over urban area at Ka band
through multipath exploitation, in: IEEE International Radar Conference, Lille,

France, 2014, pp. 1–5 . 
34] P. Setlur , T. Negishi , N. Devroye , D. Erricolo , Multipath exploitation in non-LOS

urban synthetic aperture radar, IEEE J. Sel. Top. Signal Process. 8 (1) (2014)
137–152 . 

[35] S.S. Al-Samahi , Y. Zhang , K. Ho , Elliptic and hyperbolic localizations using min-

imum measurement solutions, Signal Process. 167 (2020) 107273 . 
36] R. Zhang , F. Höflinger , L. Reindl , TDOA-based localization using interacting

multiple model estimator and ultrasonic transmitter/receiver, IEEE Trans. In-
strum. Meas. 62 (8) (2013) 2205–2214 . 

[37] J. Liang , D. Wang , L. Su , B. Chen , H.C. Chen , So , Robust MIMO radar
target localization via nonconvex optimization, Signal Process. 122 (2016)

33–38 . 

38] W. Liu , P.P. Pokharel , J.C. Príncipe , Correntropy: properties and applications
in non-Gaussian signal processing, IEEE Trans. Signal Process. 55 (11) (2007)

5286–5298 . 
39] S. Zhang , A. Constantinides , Lagrange programming neural networks, IEEE

Trans. Circuits Syst. II 39 (7) (1992) 441–452 . 
40] M. Nagamatu , T. Yanaru , On the stability of Lagrange programming neural net-
works for satisfiability problems of prepositional calculus, Neurocomputing 13

(2) (1996) 119–133 . 
[41] X. Zhu , S.-W. Zhang , A.G. Constantinides , Lagrange neural networks for linear

programming, J. Parallel Distrib. Comput. 14 (3) (1992) 354–360 . 
42] V. Sharma , R. Jha , R. Naresh , An augmented Lagrange programming optimiza-

tion neural network for short term hydroelectric generation scheduling, Eng.
Optim. 37 (2005) 479–497 . 

43] J. Liang , H.C. So , C.S. Leung , J. Li , A. Farina , Waveform design with unit modulus

and spectral shape constraints via Lagrange programming neural network, IEEE
J. Sel. Top. Signal Process. 9 (8) (2015) 1377–1386 . 

44] C.J. Rozell , D.H. Johnson , R.G. Baraniuk , B.A. Olshausen , Sparse coding via
thresholding and local competition in neural circuits, Neural Comput. 20 (10)

(2008) 2526–2563 . 
45] C.-S. Leung , J. Sum , A.G. Constantinides , Recurrent networks for compressive

sampling, Neurocomputing 129 (2014) 298–305 . 

46] J.T. Barron , A general and adaptive robust loss function, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2019,

pp. 4331–4339 . 

http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0032
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0032
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0032
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0032
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0032
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0032
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0033
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0033
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0033
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0034
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0034
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0034
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0034
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0034
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0035
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0035
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0035
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0035
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0036
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0036
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0036
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0036
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0037
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0037
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0037
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0037
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0037
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0037
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0037
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0038
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0038
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0038
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0038
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0039
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0039
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0039
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0040
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0040
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0040
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0041
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0041
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0041
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0041
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0042
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0042
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0042
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0042
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0043
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0043
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0043
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0043
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0043
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0043
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0044
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0044
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0044
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0044
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0044
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0045
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0045
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0045
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0045
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0046
http://refhub.elsevier.com/S0165-1684(20)30117-1/sbref0046

	Robust MIMO radar target localization based on lagrange programming neural network
	1 Introduction
	2 Background
	2.1 Notation
	2.2 MIMO Radar localization
	2.3 Lagrange programming neural network
	2.4 Locally competitive algorithm

	3 Development of proposed algorithms
	3.1 Problem formulation
	3.2 LPNN for robust MIMO radar localization

	4 Local stability of proposed algorithms
	4.1 &#x2113;1-norm LPNN algorithm
	4.2 &#x2113;1-norm LPNN-LCA algorithm

	5 Simulation
	5.1 Experiment 1: target localization in Gaussian noise
	5.2 Experiment 2: Target localization in Gaussian noise with NLOS outliers
	5.3 Experiment 3: Target localization in Gaussian noise with SINR outliers
	5.4 Checking of Theorem 1

	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References


