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a b s t r a c t 

Given a set of 2-dimensional (2D) scattering points, obtained from the edge detection process, the aim 

of ellipse fitting is to construct an elliptic equation that best fits the scattering points. However, the 

2D scattering points may contain some outliers. To address this issue, we devise a robust ellipse fitting 

approach based on two analog neural network models, Lagrange programming neural network (LPNN) 

and locally competitive algorithm (LCA). We formulate the fitting task as a nonsmooth constrained opti- 

mization problem, in which the objective function is an approximated l 0 -norm term. As the LPNN model 

cannot handle non-differentiable functions, we utilize the internal state concept of LCA to avoid the com- 

putation of the derivative at non-differentiable points. Simulation results show that the proposed ellipse 

fitting approach is superior to several state-of-the-art algorithms. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Fitting of geometric primitives with given 2-dimensional (2D)

cattering points is required in many research areas, such as

hysics [1] , biology [2,3] , gait periodicity detection [4] , healthcare

echnology [5] , and computer vision [6] . In particular, an ellipse

s a common geometric primitive in image processing. Generally,

llipse fitting is more difficult than circle fitting because the equa-

ion of ellipse is more complicated than that of circle. 

Numerous ellipse fitting algorithms have been developed in the

iteratures. They can be roughly classified into two categories. The

rst category involves Hough transform (HT) and its variants [7,8] .

ts basic idea is to search the five parameters of the ellipse in a 5-

imensional (5D) space. Apparently, the searching process is com-

utationally costly. The second one is based on the least squares

LS) methodology. Its key idea is to calculate the elliptical param-

ters by minimizing an error metric between the geometric prim-

tives and the scattering points [9] . In general, the LS category is

ore computationally efficient than the first category. The LS cate-

ory can be further divided into two sub-categories, geometric and

lgebraic. 
∗ Corresponding author. 
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In the geometric sub-category, the error metric is the sum of

he orthogonal distances between the 2-D scattering points and

he constructed ellipse [10,11] . In the algebraic sub-category [12–

5] , for each scattering point, the fitting score is based on the

lgebraic distance. The algebraic based algorithms were exten-

ively studied because they are generally simple and computa-

ionally attractive. Among various algebraic based algorithms, the

onstrained least squares (CLS) [15] is a representative algorithm,

hich introduces a unit-norm constraint on the elliptical parame-

er vector. Although the algebraic based algorithms work very well

n many cases, they are quite sensitive to outliers. It should be

oticed that the 2D scattering points are usually acquired from

he edge detection process. Hence it is difficult to avoid distur-

ances including outliers. So there is a need to devise robust

lgebraic based algorithms. Recently, a few robust ellipse fitting

umerical algorithms have been proposed, including the sparsity

ased method (SBM) [16] and the robust CL S (RCL S) [17] . The

ormer utilizes the l 1 -norm to resist outliers and calculates the

lliptical parameters by solving a second-order cone programming

roblem. The latter introduces the maximum correntropy criterion

nd quadratic constraint to enhance robustness. 

Bio-inspired techniques, such as artificial neural net-

orks [18,19] , evolutionary [20] , and genetic algorithms [21,22] ,

ave been used for engineering applications. In particular, analog

https://doi.org/10.1016/j.neucom.2020.02.100
http://www.ScienceDirect.com
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neural circuits for solving constrained optimization problems

have been investigated over twenty years [18,19,23–27] . When we

require realtime/interactive solutions [18,19,28] , the analog neural

circuit approach is more preferable. 

In the analog neural circuit approach, we use a number of neu-

rons to hold the decision variables of the optimization problem

and develop the neural dynamics to guide the neuron state transi-

tion. The solution of the optimization problem is obtained by mea-

suring the neuron state at the equilibrium state of the network.

Tank and Hopfield [18] demonstrated that the simple Hopfield net-

work model is able to solve various kinds of optimization prob-

lems, such as analog-to-digital conversion (ADC). 

In [19,29–31] a number of models were proposed to solve var-

ious nonlinear constrained optimization problems. Also, various

projection neural network models [24,25,30,32] were proposed in

the last two decades. However, many existing models are designed

for solving a dedicated constrained optimization problem. For in-

stance, in [27] , the model was designed for the quadratic program-

ming problem with the box constraint. 

The Lagrange programming neural network (LPNN) ap-

proach [33–37] provides a general framework for solving various

constrained optimization problems. With the augmented term

concept, the LPNN approach is able to solve nonconvex opti-

mization problems. Recently, some new applications of using

LPNN approach were reported [36–39] , including sparse ap-

proximation, target localization, and waveform design for radar

systems. However, the original LPNN framework is applicable to

the differentiable objective function and constraints only. 

This paper develops a robust ellipse fitting approach based on

the LPNN approach [33–37,40] . The l p -norm ( p ≤ 1) based objective

function [16] is able to achieve robustness against outlier samples.

Especially, in terms of suppressing the effect of outlier samples, the

l 0 -norm based objective function is much better. 

This paper exploits the LPNN formulation for ellipse fitting with

the l 0 -norm based objective function. We call the proposed ap-

proach l 0 -LPNN . Since the traditional LPNN framework requires

that its objective function and constraints should be twice differen-

tiable, we adopt the locally competitive algorithm (LCA) [41,42] to

avoid the computation of derivatives at non-differentiable points

by utilizing the hidden state concept. Simulation results show that

the proposed ellipse fitting approach is superior to several state-

of-the-art algorithms. 

The rest of this paper is organized as follows. The backgrounds

of ellipse fitting, the LPNN and LCA models are described in

Section 2 . In Section 3 , the proposed ellipse fitting algorithm is

developed. The local stability of the LPNN approach is proved in

Section 4 . Numerical results for algorithm evaluation and compar-

ison are provided in Section 5 . Finally, conclusions are drawn in

Section 6 . 

2. Background 

2.1. Notation 

We use a lower-case or upper-case letter to represent a scalar

while vectors and matrices are denoted by bold lower-case and

upper-case letters, respectively. The transpose operator is denoted

as ( ·) T , and I I I and 0 represent the identity matrix and zero matrix of

appropriate dimensions, respectively. Other mathematical symbols

are defined in their first appearance. 

2.2. Ellipse fitting 

An axis-aligned ellipse, centered at ( c x , c y ), can be expressed

as: 
(x − c x ) 2 

a 2 
+ 

(y − c y ) 2 

b 2 
= 1 . (1)

here a and b are the radii along the two axes, respectively. This

articular parametric model is frequently used in the diameter

ontrol system of silicon single crystal growth [43] . For the more

eneral case, a non-axis aligned ellipse centered at ( c x , c y ) with a

ounter-clockwise rotation of θ can be described as 

((x − c x ) cos θ + (y − c y ) sin θ ) 2 

a 2 

+ 

(−(x − c x ) sin θ + (y − c y ) cos θ ) 2 

b 2 
= 1 . (2)

he task of ellipse fitting is to find the five parameters { a, b, c x ,

 y , θ}. However, it is very difficult to estimate them directly be-

ause Eq. (2) is highly nonlinear. Instead, many ellipse fitting algo-

ithms [44–46] consider the second-order polynomial model, given

y 

x 2 + Bxy + Cy 2 + Dx + Ey + F = 0 , (3)

here the six parameters { A, B, C, D, E, F } are related to { a, b, c x ,

 y , θ} as: 

 = 

cos 2 θ

a 2 
+ 

sin 

2 θ

b 2 
, (4)

 = 2 cos θ sin θ
(

1 

a 2 
− 1 

b 2 

)
, (5)

 = 

sin 

2 θ

a 2 
+ 

cos 2 θ

b 2 
, (6)

 = 

−2 c x cos 2 θ − 2 c y sin θ cos θ

a 2 

+ 

−2 c x sin 

2 θ + 2 c y sin θ cos θ

b 2 
, (7)

 = 

−2 c y sin 

2 θ − 2 c x sin θ cos θ

a 2 

+ 

−2 c y cos 2 θ + 2 c x sin θ cos θ

b 2 
, (8)

 = 

(c x cos θ + c y sin θ ) 2 

a 2 
+ 

(c x sin θ − c y cos θ ) 2 

b 2 
− 1 . (9)

Let D = { (x i , y i ) : i = 1 , . . . , N} be a set of 2-D scattering points

f an ellipse. Denote 

= [ A, B, C, D, E, F ] T , (10)

 

 

 i = [ x 2 i , x i y i , y 
2 
i , x i , y i , 1] T , ∀ i, (11)

 

 

 = [ x x x 1 , . . . , x x x N ] . (12)

n the absence of measurement errors, from (3) , we have 

 

 

 

T α = [ x x x T 1 α, . . . , x x x T N α] 
T = 0 . (13)

n a noisy environment, for a scattering point ( x i , y i ), i.e., ( x x x i =
 x 2 

i 
, x i y i , y 

2 
i 
, x i , y i , 1] T ) , we have 

 

 

 

T 
i α � = 0 . (14)

he absolute value | x x x T 
i 
α| is called the “algebraic distance”, which

an be used to measure the fitting error of a point ( x i , y i ) [46] . 

The traditional CLS algorithm considers the following con-

trained optimization problem: 

in 

α

∥∥X 

X X 

T α
∥∥2 

2 
(15a)
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Fig. 1. Examples of general threshold function. 
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1 For the absolute function | z |, the sub-differential ∂ | z | at z = 0 is equal to [ −1 , 1] . 
.t. αT α = 1 . (15b) 

The objective function in ( 15 a) is the sum of squared algebraic

istances. In ( 15 b), the unit-norm constraint is used to avoid the

edundant solutions (the solutions with linear correlation) and the

rivial solution ( α = 0 ). The CLS approach is efficient for ellipse fit-

ing, provided that the noise in data obeys Gaussian distribution.

hen the data set contains impulsive disturbances or even out-

iers, the CLS solution may have a large deviation from the actual

llipse. 

It is worth pointing out that the CLS solution may also corre-

pond to a hyperbola or parabola [15] because these two geomet-

ic primitives can be expressed by (13) as well. To eliminate these

ossibilities, an additional constraint is introduced, given by 

 

2 − 4 AC < 0 , (16) 

hich aims at constraining the solution to be an ellipse [17] . 

.3. Lagrange programming neural network 

The LPNN is an analog neural network computational approach.

t can be used to solve a general nonlinear constrained optimiza-

ion problem [33] , given by 

in 

z z z 
f ( z z z ) (17a) 

.t. h 

h h ( z z z ) = 0 , (17b)

here z z z = [ z 1 , . . . , z n ] 
T is the variable vector being optimized, f :

 

n → R is the objective function, h h h : R 

n → R 

m with m < n repre-

ents m equality constraints, and f and h h h should be twice differen-

iable. 

The first step in the LPNN approach is to define the Lagrangian,

iven by 

 ( z z z , ζ) = f ( z z z ) + ζT h 

h h ( z z z ) , (18) 

here ζ = [ ζ1 , . . . , ζm 

] T is the Lagrange multiplier vector. There are

wo kinds of neurons in LPNN, namely, variable neurons and La-

rangian neurons. The n variable neurons are used to hold the de-

ision variable vector z z z , while the m Lagrangian neurons deal with

he Lagrange multiplier vector ζ. In the LPNN framework, the dy-

amics of the neurons are defined as 

d z z z 

d t 
= −∂L ( z z z , ζ) 

∂ z z z 
, (19a) 

d ζ

dt 
= 

∂L ( z z z , ζ) 

∂ ζ
. (19b) 

The differential equations in (19) govern the state transition of

he neurons. After the neurons settle down at an equilibrium, the

olution is obtained by measuring the neuron outputs at this sta-

le equilibrium point. The purpose of ( 19 a) is to seek for a state

ith the minimum objective value, while ( 19 b) aims at constrain-

ng the system state such that it falls into the feasible region. From

19) , the network will settle down at a stable state if several mild

onditions are satisfied [33,36,37] . It is clear that f and h h h should be

ifferentiable, otherwise the dynamics cannot be defined. 

.4. Locally competitive algorithm 

The LCA, introduced by [41] , is also an analog neural network.

t is used for handling the following unconstrained optimization

roblem, given by 

in L lca = 

1 ‖ b b b − �z z z ‖ 

2 
2 + λ‖ z z z ‖ 1 , (20) 
2 
here z z z ∈ R 

n , b b b ∈ R 

m and � ∈ R 

m ×n ( m < n ). For this optimization

roblem, the LCA uses n neurons to hold the variable vector z z z . 

To minimize the cost function L lca , the gradient of L lca should

e calculated. Note that the term λ‖ z z z ‖ 1 is non-differentiable at

ero. In mathematics, the sub-differential, denoted as ∂‖ z z z ‖ 1 , can

e used to describe the gradient of ‖ z z z ‖ 1 . Since the sub-differential

t a non-differentiable point is equal to a set 1 , the implementation

f the dynamics becomes infeasible. 

The LCA introduces an internal state vector u u u = [ u 1 , . . . , u n ] 
T for

he neuron output vector z z z . The mapping between z z z and u u u is given

y 

 i = T λ(u i ) = 

{
0 , | u i | ≤ λ, 

u i − λsign (u i ) , | u i | > λ. 
(21)

n the LCA, z z z and u u u are the output state variable and internal state

ariable vectors, respectively. The parameter λ is a scalar which

enotes the threshold of the function. 

Furthermore, according to the proof in the appendices of [41] ,

e have 

∂‖ z z z ‖ 1 	 u 

u u − z z z . (22) 

t a non-differentiable point, u u u − z z z can be seen as a gradient selec-

ion process. The LCA defines its dynamics with respect to u u u rather

han to z z z . Hence, the sub-differentiable term can be replaced ac-

ording to the relationship given in (22) and we have 

d u 

u u 

dt 
= −∂ z z z L lca = �T b b b − (�T � − I I I ) z z z − u 

u u . (23)

t should be noticed that if the dynamics of z z z is used, we need to

mplement ∂‖ z z z ‖ 1 which is equal to a set for ∀ z i = 0 , i = 1 , . . . , n .

n the LCA, for d u u u /dt, the term ∂‖ z z z ‖ 1 can be replaced by u u u − z z z . 

In [41] , a more general threshold function was proposed, given

y 

 i = T (η,δ,λ) (u i ) = sign (u i ) 
| u i | − δλ

1 + e −η(| u i |−λ) 
, (24) 

here λ still denotes the threshold, η is a parameter to control

he speed of the threshold transition and δ ∈ [0, 1] indicates what

raction of an additive adjustment is made for values above thresh-

ld. Some examples of this general threshold function are provided

n Fig. 1 . With this threshold function, a more general objective
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˜ α � ˜ α = ε. (36d) 
function can be solved, given by 

˜ L lca = 

1 

2 

‖ b b b − �z z z ‖ 

2 
2 + λ

n ∑ 

i =1 

ψ (η,δ,λ) (z i ) . (25)

Furthermore, for any z i = T (η,δ,λ) (u i ) , the relationship between u i ,

z i and ∂ ψ ( η, δ, λ) ( z i )/ ∂ z i is 

λ
∂ψ (η,δ,λ) (z i ) 

∂z i 
≡ u i − z i . (26)

It should be noticed that the analytical expression of ψ ( η, δ, λ) ( ·)
cannot be obtained generally. However, this does not limit the ap-

plication of the LCA because the neural dynamics are expressed

in terms of the threshold function T ( η, δ, λ) ( u i ) rather than the exact

penalty term. 

Setting η → ∞ , δ = 0 and λ = 1 , we obtain an ideal hard

threshold function [41] , given by 

z i = T (∞ , 0 , 1) (u i ) = 

{
0 , | u i | ≤ 1 , 

u i , | u i | > 1 . 
(27)

The corresponding penalty term is close to an l 0 -norm term, given

by 

λ
n ∑ 

i =1 

ψ (∞ , 0 , 1) (z i ) = 

1 

2 

n ∑ 

i =1 

I(| z i | > 1) , (28)

where I(·) is an indicator function. Note that according to (27) , the

variables z i produced by the ideal threshold function cannot take

values in the range of [ −1 , 0) and (0,1]. The details of (27) and

(28) are provided in [41] . 

If we set η → ∞ and δ = 1 , then the general threshold function

is reduced to the soft threshold function [41] , given by 

z i = T (∞ , 1 ,λ) (u i ) = T λ(u i ) . (29)

The corresponding penalty term becomes an l 1 -norm function,

given by 

λ
n ∑ 

i =1 

ψ (∞ , 1 ,λ) (z i ) = λ‖ z z z ‖ 1 . (30)

The behavior of the dynamics under various settings has been

studied in [41,42,47] . However, the limitation of LCA is that it can

handle the unconstrained optimization problem only. 

3. Development of the proposed algorithm 

3.1. Problem formulation 

In the CLS method, the l 2 -norm is used as its objective func-

tion, i.e., ‖ X X X T α‖ 2 
2 
. It is well known that the l 2 -norm works well

in Gaussian noise environments, but is sensitive to outliers. In the

presence of impulsive noise or outliers, the performance of using

the l p -norm ( p < 2) is much better than that of using the l 2 -norm.

Especially, for p → 0, the performance becomes better. 

In this study, we formulate the problem as a constrained l 0 -

norm problem, given by 

min 

α

∥∥X 

X X 

T α
∥∥

0 
(31a)

s.t. αT α = 1 , (31b)

B 

2 − 4 AC < 0 . (31c)

We use the LPNN framework to solve the optimization problem

stated in (31) . Prior to applying the LPNN framework, we need to

resolve two issues. First, the inequality constraint in (31) should

be convert to an equality, because the LPNN framework can only
andle problems with equality constraints. Another issue is that

he objective function in (31) is non-differentiable, while the LPNN

ramework can only solve the problem with differentiable objective

nd constraints. 

To deal with the first issue, we introduce a new variable G and

hen we can change the inequality constraint, stated in ( 31 c), to

n equality constraint, given by 

 

2 − 4 AC + G 

2 = ε, (32)

here ε is a small negative scalar ( ε = −10 −12 in our experiments).

The formulation of (31) is then modified as 

in 

˜ α

∥∥∥ ˜ X 

X X 

T 
˜ α
∥∥∥

0 
(33a)

.t. ˜ αT � ˜ α = 1 , (33b)

˜ T � ˜ α = ε, (33c)

here 

˜ α = [ A, B, C, D, E, F , G ] T , 

˜ X 

X X = [ ̃  x x x 1 , ̃  x x x 2 , . . . , ̃  x x x N ] , 

˜ x x x i = [ x 2 i , x i y i , y 
2 
i , x i , y i , 1 , 0] T , 

� = 

[
I 6 ×6 0 6 ×1 

0 1 ×6 0 

]
, 

= 

[ 

� 0 3 ×3 0 3 ×1 

0 3 ×3 0 3 ×3 0 3 ×1 

0 1 ×3 0 1 ×3 1 

] 

, 

� = 

[ 

0 0 −2 

0 1 0 

−2 0 0 

] 

. 

he second issue is resolved by considering a general form of the l p 
orm. From (24) and (26) , we consider the following optimization

bjective: 

in 

˜ α, z z z 

N ∑ 

i =1 

ψ (η,δ,λ) ([ ̃  X 

X X 

T 
˜ α] i ) , (34)

here [ ·] i denotes the i th element of the vector. 

The problem stated in (33) becomes 

in 

˜ α

N ∑ 

i =1 

ψ (η,δ,λ) ([ ̃  X 

X X 

T 
˜ α] i ) (35a)

.t. ˜ αT � ˜ α = 1 , (35b)

˜ T � ˜ α = ε. (35c)

If we set η → ∞ , δ = 0 and λ = 1 in ( 35 a), the l 0 -norm goal

an be achieved. 

To exploit the LCA concept, we introduce a dummy vector z z z and

 constraint z z z = 

˜ X X X 
T 

˜ α. Therefore, (35) becomes 

in 

˜ α, z z z 

N ∑ 

i =1 

ψ (η,δ,λ) (z i ) (36a)

.t. z z z = 

˜ X 

X X 

T 
˜ α, (36b)

˜ T � ˜ α = 1 , (36c)

T 
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.2. LPNN for ellipse fitting 

From (36) , we can construct the following Lagrangian function,

iven by 

L ( ̃  α, z z z , ζ, β, γ ) 

= 

N ∑ 

i =1 

ψ (η,δ,λ) (z i ) + ζT ( z z z − ˜ X 

X X 

T 
˜ α) 

+ β( ̃  αT � ˜ α − 1) + γ ( ̃  αT � ˜ α − ε) . (37) 

n (37) , ˜ α ∈ R 

N and z z z ∈ R 

N are decision variable vectors, while

∈ R 

N , β and γ are the Lagrange multipliers. In the next step,

e can use (37) to deduce the neural dynamics for the robust el-

ipse fitting problem given by (36) . However, our preliminary ex-

erimental results find that the neural dynamics, based on (37) ,

ay be unstable. 

To improve the stability and convexity, several augmented

erms are introduced into the objective function [33–37] ,

hen (36) becomes 

min 

˜ α, z z z 

N ∑ 

i =1 

ψ (η,δ,λ) (z i ) + 

C 0 
2 

∥∥∥z z z − ˜ X 

X X 

T 
˜ α
∥∥∥2 

2 

+ 

C 1 
2 

(
˜ αT � ˜ α − 1 

)2 + 

C 2 
2 

(
˜ αT � ˜ α − ε

)2 
(38a) 

.t. z z z = 

˜ X 

X X 

T 
˜ α, (38b) 

˜ αT � ˜ α = 1 , (38c) 

˜ αT � ˜ α = ε. (38d) 

In (38) , C 0 , C 1 and C 2 are positive constants. When they are

arge enough, the augmented terms [33–37] will make the objec-

ive function of (38) to be convex. These three extra terms do not

nfluence the objective function value at an equilibrium point. It is

ecause at an equilibrium point, the constraints are satisfied, i.e.,

 

 

 = 

˜ X 

T ˜ α, ˜ αT � ˜ α = 1 , and 

˜ αT � ˜ α = ε. In other words, the values of

he augmented terms are equal to zero at an equilibrium point. 

With the augmented terms, the Lagrangian for (38) is given

y 

 ( ̃  α, z z z , ζ, β, γ ) 

= 

N ∑ 

i =1 

ψ (η,δ,λ) (z i ) + ζT 
(

z z z − ˜ X 

X X 

T 
˜ α
)

+ β
(

˜ αT � ˜ α − 1 

)
+ γ

(
˜ αT � ˜ α − ε

)
+ 

C 0 
2 

∥∥∥z z z − ˜ X 

X X 

T 
˜ α
∥∥∥2 

2 
+ 

C 1 
2 

(
˜ αT � ˜ α − 1 

)2 + 

C 2 
2 

(
˜ αT � ˜ α − ε

)2 
. (39) 

For constructing the neural dynamics, we need to calculate the

radient of Lagrangian (39) with respect to its decision variables

nd Lagrange variables. To handle the non-differentiable term, we

tilize the concept of LCA introducing an internal state variable u u u

or z z z . The relationship between u u u and z z z is given by (24) , i.e., 

 i = T (η,δ,λ) (u i ) = sign (u i ) 
| u i | − δλ

1 + e −η(| u i |−λ) 
. (40) 

ow, we define the dynamics on u u u , rather on z z z , given by 

du i 

dt 
= −∂L ( ̃  α, z z z , ζ, β, γ ) 

∂z i 
. (41) 

rom ( 19 a), the dynamics of ˜ α are given by 

d ̃  α = −∂L ( ̃  α, z z z , ζ, β, γ ) 
. (42) 
dt ∂ ̃  α
rom ( 19 b), for the Lagrangian variables, their dynamics are given

y 

d ζ

dt 
= 

∂L ( ̃  α, z z z , ζ, β, γ ) 

∂ ζ
, (43) 

dβ

dt 
= 

∂L ( ̃  α, z z z , ζ, β, γ ) 

∂β
, (44) 

dγ

dt 
= 

∂L ( ̃  α, z z z , ζ, β, γ ) 

∂γ
. (45) 

ccording to (26) and (39) , the dynamics given by (41) –(45) be-

ome 

d u 

u u 

dt 
= −u 

u u + z z z − ζ − C 0 

(
z z z − ˜ X 

X X 

T 
˜ α
)
, (46) 

d ̃  α

dt 
= 

˜ X 

X X ζ − 2 β� ˜ α − 2 γ� ˜ α − C 0 ̃  X 

X X 

(
z z z − ˜ X 

X X 

T 
˜ α
)

− 2 C 1 
(

˜ αT � ˜ α − 1 

)
� ˜ α − 2 C 2 

(
˜ αT � ˜ α − ε

)
� ˜ α, (47) 

d ζ

dt 
= z z z − ˜ X 

X X 

T 
˜ α, (48) 

dβ

dt 
= 

˜ αT � ˜ α − 1 , (49) 

dγ

dt 
= 

˜ αT � ˜ α − ε. (50) 

t should be noticed that for our formulation, we should set η as a

arge number, δ = 0 and λ = 1 in (24) . 

.3. Properties and simulation method 

In the LPNN approach, the circuit complexity depends on the

ime derivative calculations. From (46) –(50) , the most computa-

ionally demanding step is to determine the product of an N × 7

atrix and 7 × 1 vector. Hence the complexity to obtain the time

erivatives is equal to O(N) only. 

Upon convergence of the iterative procedure, we obtain the es-

imate of ˜ α, denoted by ˜ α∗. From 

˜ α∗
, the ellipse parameter esti-

ates { a ∗, b ∗, c ∗x , c ∗y , θ ∗} are then computed from: 

∗ = 

1 

2 

tan 

−1 

(
˜ α∗

2 

˜ α∗
1 

− ˜ α∗
3 

)
, (51) 

c ∗x 
c ∗y 

]
= 

[
−2 ̃  α∗

1 − ˜ α∗
2 

− ˜ α∗
2 − 2 ̃  α∗

3 

]−1 [
˜ α∗

4 

˜ α∗
5 

]
, (52) 

 

∗ = 

√ √ √ √ √ 

[
c ∗x 
c ∗y 

]T [
˜ α∗

1 ̃  α∗
2 / 2 

˜ α∗
2 / 2 ̃  α∗

3 

][
c ∗x 
c ∗y 

]
+ 1 

μ1 

, (53) 

 

∗ = 

√ √ √ √ √ 

[
c ∗x 
c ∗y 

]T [
˜ α∗

1 ̃  α∗
2 / 2 

˜ α∗
2 / 2 ̃  α∗

3 

][
c ∗x 
c ∗y 

]
+ 1 

μ2 

, (54) 

here μ1 = ˜ α∗
1 cos 2 θ ∗ + ˜ α∗

2 sin θ ∗ cos θ ∗ + ˜ α∗
3 sin 

2 θ ∗ and 

2 = ˜ α∗
1 

sin 

2 θ ∗ − ˜ α∗
2 

sin θ ∗ cos θ ∗ + ˜ α∗
3 

cos 2 θ ∗. Fig. 2 shows the

ynamics of the estimated parameters in a typical experiment.

he settings are described in Section 5.2 . It is seen that the

etwork can settle down within 40 characteristic times. 

In the simulation section, we use a discrete method to simulate

he dynamics. The dynamics, (46) –(50) , are discretized as 
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Fig. 2. Dynamics of estimated parameters under Laplacian noise when the noise level is 0 . 8 
√ 

2 . (a) u ; (b) ˜ α; (c) ζ; (d) β and γ . 
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 u 

(k +1) = u 

u u 

(k ) + μ
d u 

u u 

(k ) 

dt 
, (55)

˜ α(k +1) = 

˜ α(k ) + μ
d ̃  α(k ) 

dt 
, (56)

ζ(k +1) = ζ(k ) + μ
d ζ(k ) 

dt 
, (57)

β(k +1) = β(k ) + μ
dβ(k ) 

dt 
, (58)

γ (k +1) = γ (k ) + μ
dγ (k ) 

dt 
, (59)

where the superscript ( k ) denotes the k th iteration and μ > 0 is a

small positive constant. 

4. Stability of the proposed algorithm 

For an analog neural network, the stability of its dynamics is a

crucial property that needs to be investigated. For the ellipse fitting

model shown in (38) , its global stability is hard to be proved. This

section discusses the local stability of the proposed model. That

means, an equilibrium point should be stable. Otherwise, the net-

work can never converge to it. 

Let { ̃  α∗
, u u u ∗, ζ∗

, β∗, γ ∗} be an equilibrium point of the dynam-

ics given by (46) –(50) . Let ˜ α∗
, u u u ∗ be the corresponding state vari-

able vectors. There are two sufficient conditions for local stability

in the LPNN approach. The first one is that the Hessian matrix of

the Lagrangian (39) at { ̃  α∗
, u u u ∗, ζ∗

, β∗, γ ∗} should be positive def-

inite. It has been achieved by introducing the augmented terms.

Because according to [33–37] , as long as the augmented terms are

large enough, at an equilibrium point, the Hessian is positive defi-

nite under mild conditions. 
The second condition is that at an equilibrium point, the gra-

ient vectors of the constraints with respect to the state variables

hould be linearly independent. In (38) , we have N + 2 constraints

iven by 

 1 ( ̃  α, z z z ) = 

˜ αT � ˜ α − 1 , (60)

 2 ( ̃  α, z z z ) = 

˜ αT � ˜ α − ε, (61)

 i +2 ( ̃  α, z z z ) = z i − ˜ αT ˜ x x x i , i = 1 , . . . , N. (62)

he gradient vectors with respect to { ̃  α∗
, u u u ∗} are given by 

 

 

 

 

 

 

 

⎡ 

⎢ ⎢ ⎣ 

∂h 1 ( ̃  α
∗
, z z z ∗) 

∂ ̃  α
∂h 1 ( ̃  α

∗
, z z z ∗) 

∂ u 

u u 

⎤ 

⎥ ⎥ ⎦ 

, · · · , 

⎡ 

⎢ ⎢ ⎣ 

∂h N+2 ( ̃  α
∗
, z z z ∗) 

∂ ̃  α
∂h N+2 ( ̃  α

∗
, z z z ∗) 

∂ u 

u u 

⎤ 

⎥ ⎥ ⎦ 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 A 

2 B 

2 C 
2 D 

2 E 
2 F 
0 

0 

0 

. . . 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−2 C 
B 

−2 A 

0 

0 

0 

G 

0 

0 

. . . 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−x 2 1 

−x 1 y 1 
−y 2 1 

−x 1 
−y 1 
−1 

0 

g 1 
0 

. . . 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, · · · , 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−x 2 N 

−x N y N 
−y 2 N 

−x N 
−y N 
−1 

0 

0 

0 

. . . 
g N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(63)

here 
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Fig. 3. Ellipse data with 20 scattering points contaminated by Laplacian noise. 

g

F  

δ  

∀
 

N  

e  

i  

e  

t  

a  

G  

r  

v

Fig. 4. Dynamics of the estimated parameters ˜ α, β and γ with different values of { C 0 ,

dynamics of β and γ . The Laplacian noise level is 0 . 8 
√ 

2 . 
 i = 

∂h i +2 ( ̃  α, z z z ) 

∂z i 

∂z i 
∂u i 

= 

1 

1 + exp (−η(| u i | − λ)) 
+ 

η(| u i | − δλ) exp (−η(| u i | − λ)) 

(1 + exp (−η(| u i | − λ)) ) 2 
. 

or the proposed approach, we set η to be a large positive number,

= 0 , and λ = 1 . Hence it is easy to show that g i is positive for

 i = 1 , . . . , N. 

In (63) , there are N + 2 gradient vectors and each of them has

 + 7 elements. It is easy to note that the last N vectors are lin-

arly independent with each other. Besides, they are all linearly

ndependent with the first two vectors. At an equilibrium, if the

stimated G is not equal to zero, then all the N + 2 gradient vec-

ors are linearly independent. Therefore, { ̃  α∗
, u u u ∗, ζ∗

, β∗, γ ∗} is an

symptotically stable point of the neural network, if the estimated

 , i.e., ˜ α7 is not equal to zero. For any points nearby the equilib-

ium point { ̃  α∗
, u u u ∗, ζ∗

, β∗, γ ∗} , the state of the network must con-

erge to this equilibrium. 
 C 1 , C 2 }. The first column represents the dynamics of ˜ α, while the second is the 
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Fig. 5. MAD results of various algorithms in Laplacian noise. The Laplacian noise level is varied from 0 to 
√ 

2 . 
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5. Simulations 

This section conducts several experiments to evaluate the per-

formance of the proposed l 0 -norm LPNN approach. Several state-

of-the-art ellipse fitting algorithms are implemented for per-

formance comparison. They are the direct least squares fitting

(DLSF) [46] , SBM [16] , and RCLS [17] . Note that for the DLSF algo-

rithm, it solves a generalized eigenvalue problem to fit an ellipse.

The SBM method [16] introduces two regularized terms and deter-

mines ellipse parameters by solving a second-order cone program-

ming (SOCP) problem. The RCLS algorithm combines the maximum

correntropy criterion with the CLS method. In addition, as compar-

ison, we also apply LPNN to solve the l 2 -norm and the l 1 -norm

based formulation. 

For the LPNN approach, we consider three approaches. One is

our proposed l 0 -norm approach, namely l 0 -LPNN . For the proposed

l 0 -LPNN, we set η = 10 , 0 0 0 , δ = 0 and λ = 1 , and the threshold is

z i = T (10 0 0 0 , 0 , 1) (u i ) = sign (u i ) 
| u i | 

1 + e −10 0 0 0(| u i |−1) 
. (64)
Another one is the l 1 -norm approach, in which we set η → ∞ ,

= 1 and λ = 1 . The threshold is given by 

 i = T 1 (u i ) = 

{
0 , | u i | ≤ 1 , 

u i − sign (u i ) , | u i | > 1 . 
(65)

For the l 2 -norm version, we apply the LPNN directly to solve: 

min 

α, z z z 
‖ z z z ‖ 

2 
2 (66a)

.t. z z z = X 

X X 

T ˜ α, (66b)

˜ T � ˜ α = 1 , (66c)

˜ T � ˜ α = ε. (66d)

It is expected that (66) is just an alternative implementation of

he CLS estimator in [15] with an additional constraint to make

ure the fitting result is an ellipse. 
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Fig. 6. Fitting results of a typical run at Laplacian noise level of 0 . 7 
√ 

2 (around 0.9899). 

Fig. 7. Fitting results of a typical run at Laplacian noise level of 0 . 9 
√ 

2 (around 1.2728). 
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Fig. 8. Fitting results of a typical run at Laplacian noise level of 
√ 

2 (around 1.4142). 

Fig. 9. The MAD results of various algorithms in uniform noise. The uniform noise level is varied from 0 to 2.4. 
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Fig. 10. The fitting results of a typical run for the uniform noise level equal to 2.4. 

 

p  

t  

{  

w

 

W  

g  

m  

s  

d  

g  

p  

i  

i  

d

5

 

r  

S  

C  

a  

C  

n  

s  

fl  

i  

s  

t  

t  

p

5

 

a  

e  

e  

a  

t  

m  

T  √
 

c  

r  

b  

s  

c  

d  

t  

t  

l

 

l  

D  

g  

r  

o  

c  

o  

F

5

 

a  
In the proposed LPNN approach, C 0 , C 1 , C 2 are three tunable

arameters and we use trial-and-error method to select them. We

ry 6 C 0 values: C 0 = { 1 , 2 , 3 , 4 , 5 , 6 } and 6 C 1 , C 2 values: C 1 = C 2 =
 2 , 4 , 6 , 8 , 10 , 12 } , and finally choose C 0 = 5 , C 1 = 10 , C 2 = 10 . For ε,

e select ε = −10 −12 . 

In the discrete simulation, the step size μ is selected as 0.0 0 01.

e also need to initialize the state variables ˜ α and u u u , and the La-

rangian variables ζ, β and γ . The ˜ α is not initialized with the CLS

ethod because its solution may not correspond to an ellipse. In-

tead, we compute the initial estimate of ˜ α by assuming that the

ata points are sampled from a circle. That is, the circle center is

iven by the midpoint of the data set while the radius is a small

ositive random value. Once the circle is constructed, it is easy to

nitialize ˜ α. We can also get initial estimates of u by u = 

˜ X X X 
T 

˜ α. The

nitial values of the Lagrangian variables ζ, β and γ are small ran-

om values. 

.1. Stability and convergence 

In this subsection, we show the stability of our proposed algo-

ithm. The settings are described in Section 5.2 . As mentioned in

ection 4 , the augmented terms should be large enough. That is,

 0 , C 1 , and C 2 should be sufficiently large. To illustrate the stability

nd convergence of our algorithm, we test three settings of { C 0 , C 1 ,

 2 }: {0.05, 0.1, 0.1}, {0.5, 1, 1}, and {5, 10, 10}. The dynamics of the

etworks under these three settings are shown in Fig. 4 . It can be

een that when { C 0 , C 1 , C 2 } are with small values, their dynamics

uctuate and the states of the neurons do not converge, as shown

n the first two rows of Fig. 4 . When { C 0 , C 1 , C 2 } = { 5 , 10 , 10 } , the

tates of the neurons converge within around 80 characteristic

imes. In addition, the estimated G (red curve) is always bigger

han 0 for all the three settings, as shown in Fig. 4 . In our exam-

les, only the dynamics with { C , C , C } = { 5 , 10 , 10 } converge. 
0 1 2 
.2. Ellipse fitting in Laplacian noise 

In this experiment, we test the performance of our proposed

pproach in different Laplacian noise levels. Firstly, we generate an

llipse with 100 data points, which is shown in Fig. 3 . The true

lliptical parameters are c x = 0 , c y = 0 , a = 2 , b = 1 , θ = 30 ◦. We

dd small Gaussian noise with variance 10 −8 to these points. We

hen randomly choose 20 points from the data set and add zero-

ean Laplacian noise into them, which are also illustrated in Fig. 3 .

he standard deviation of the Laplacian noise is varied from 0 to
 

2 . We repeat the experiment 100 times at each noise level and

ompute the mean absolute deviation (MAD) of the estimated pa-

ameters ( c ∗x , c ∗y , a ∗, b ∗, θ ∗). The results are shown in Fig. 5 . It can

e seen that the l 2 -norm LPNN and DLSF algorithms are very sen-

itive to outliers. The SBM and RCLS methods can effectively de-

rease the impact of outliers. However, both of them start to break

own when the Laplacian noise level is greater than 0.9899. For

he l 1 -norm LPNN, it works well until the noise level is 1.1314. Fur-

hermore, the l 0 -norm LPNN still works very well up to the noise

evel of 
√ 

2 . 

Fig. 6 shows the fitting results of a typical run when the noise

evel is equal to 0.9899. It can be seen that the l 2 -norm LPNN and

LSF methods do not offer reliable results, while the remaining al-

orithms can provide a satisfactory fitting. Fig. 7 plots the fitting

esults of a typical run at the noise level of 1.2728. We observe that

nly the l 1 -norm and l 0 -norm LPNN algorithms can achieve an ac-

urate ellipse fitting. When we increase the noise level to 1.4142,

nly the l 0 -norm LPNN algorithm works well, which is shown in

ig. 8 . 

.3. Ellipse fitting in uniform noise 

In the second experiment, we test the performance of various

lgorithms under uniform noise. The experimental setting is the
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Fig. 11. The MAD results of different algorithms in uniform noise. The uniform noise level is fixed at 1.5, but number of noisy points changes from 0 to 40. 
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same as Section 5.2 , except that the Laplacian noise is replaced by

the uniform noise. The noise standard deviation is now varied from

0 to 2.4. To compute the MAD of the estimated parameters, we

repeat the experiment 100 times at each noise level. The results

are shown in Fig. 9 . It is observed that the l 2 -norm LPNN and DLSF

algorithms are very sensitive to outliers. The SBM, RCLS and l 1 -

norm LPNN methods start to break down when the uniform noise

level is around 0.9 to 1.2. The l 0 -norm LPNN still works very well

up to the noise level of 2.4. Fig. 10 shows the fitting results of a

typical run at the noise level of 2.4. It can be seen that only the

l 0 -norm LPNN method produces a satisfactory fitting result. 

5.4. Ellipse fitting with different number of noisy data points 

In the third experiment, we fix the standard deviation of the

uniform noise at 1.5, but change the number of noisy points from

0 to 40. Other settings are the same as Section 5.3 . We repeat

the experiment 100 times at each setting. The results are shown

in Fig. 11 . The l 2 -norm LPNN and DLSF algorithms are very sensi-

tive to the quantity of outliers. The SBM, RCLS and l 1 -norm LPNN

methods cannot work when the number of noisy points is larger
han 10. The l 0 -norm LPNN can give satisfactory results until the

umber of noisy points is 40. 

.5. Real data with pepper noise 

In the fourth experiment, we test the performance of various

lgorithms with real data. 

Fig. 12 (a) shows a human eye image [17] and this kind of im-

ges is frequently used in iris recognition where a key step is to

nd out the correct pupil region. In this test, our target is to fit

he pupil region of the eye. After edge extraction, Fig. 12 (b) is

btained. For the extracted image, we randomly add some pep-

er noise whose density is 0.001. The observations are provided

n Fig. 12 (c). Finally, we apply various robust ellipse fitting algo-

ithms including SBM, RCLS, l 1 -norm LPNN, and l 0 -norm LPNN to

he data and the fitting results are given by Fig. 12 (d)–12 (g). We

an see that the RCLS and SBM both are influenced by the pepper

oises, but l 1 -norm LPNN and l 0 -norm LPNN give out satisfactory

esults. 

Fig. 13 (a) shows a real image of space probe [17] and here the

ask is to fit the circumference of the antenna. After edge de-

ection, Fig. 13 (b) is obtained. Same as the process mentioned
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Fig. 12. Fitting results of a human eye image. (a) Actual image. (b) Data points 

after edge extraction. (c) Observations with pepper noise. (d) Fitting result of SBM. 

(e) Fitting result of RCLS. (f) Fitting result of l 1 -norm LPNN. (g) Fitting result of l 0 - 

norm LPNN. 
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Fig. 13. Fitting results of a space probe image. (a) Actual image. (b) Data points 

after edge extraction. (c) Observations with pepper noise. (d) Fitting result of SBM. 

(e) Fitting result of RCLS. (f) Fitting result of l 1 -norm LPNN. (g) Fitting result of l 0 - 

norm LPNN. 
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efore, we add pepper noise whose density is 0.001. The resultant

bserved data are given in Fig. 13 (c). Fig. 13 (d) Fig. 13 (g) shows

he fitting results of the SBM, RCLS, l 1 -norm LPNN, and l 0 -norm

PNN. It can be seen that the SBM, RCLS and l 1 -norm LPNN do not

ork very well. Although the l 1 -norm can suppress the effect of

utliers, the fitting result of l 1 -norm LPNN method is worse than

he result of l 0 -norm LPNN scheme. 

. Conclusion 

Many applications require fitting 2-D noisy data points with an

llipse. To reduce the influence of outliers, this paper proposes

 robust ellipse fitting approach based on the concept of LPNN.

nspired by the properties of l 0 -norm, we redesign the objective

unction of the original ellipse fitting problem to make it robust

gainst impulsive noise and outliers. Since the conventional LPNN

s able to handle differentiable objective functions only, we intro-

uce the LCA concept into the LPNN framework. It is demonstrated

hat the proposed l 0 -norm LPNN method can effectively reduce the

nfluence of outliers and is better than other robust ellipse fitting

lgorithms. 
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