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Abstract

Most of the existing algorithms for multiple-input multiple-output radar target localization assume that the

bistatic range measurements are contaminated by one certain kind of noise only, such as Gaussian noise

and impulsive noise. However, when the practical noise violates the original assumed distribution, their

localization performance degrades severely. Therefore, adaptive and robust localization algorithms that can

achieve good localization performance under both Gaussian and impulsive noise are highly desirable. In

this paper, we exploit the truncated least squares loss function called capped Frobenius norm (CFN) to

resist outliers. An adaptive update scheme is developed to automatically determine the upper bound of

CFN using the normalized median absolute deviation. Then, the nonconvex and nonsmooth CFN-based

formulation is transformed into a regularized ℓ2-norm optimization problem based on the half-quadratic

theory. The alternating optimization (AO) algorithm is adopted as the solver, and closed-form solutions

for both subproblems are derived. We also show that the sequence of objective function value generated by

the devised algorithm converges. Experimental results verify the superiority of the proposed algorithm over

several existing algorithms in terms of localization accuracy under impulsive noise. Furthermore, the devised

algorithm can attain comparable performance to ℓ2-norm based methods without tweaking hyperparameters

under Gaussian noise.

Keywords: Multiple-input multiple-output (MIMO) radar, outlier, robustness, capped Frobenius norm,

half-quadratic optimization.

1. Introduction

The ability to effectively resist noise lies in the core for robust multiple-input multiple-output (MIMO)

radar target localization [1–7]. To achieve robustness, many efforts have been dedicated to addressing noise

including Gaussian noise, impulsive noise, and outliers [7–11]. Among various localization frameworks, the

ℓ2-norm based algorithms are frequently employed to achieve the maximum likelihood estimates when the

noise is Gaussian distributed. Specifically, the localization problem is formulated to minimize the sum of the
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squared residual between the real and estimated bistatic range (BR) measurements, i.e., total propagation

distances from the transmitters to receivers in the system [1, 4, 6]. Such an ℓ2-norm based formulation is

well known as least squares (LS) problem.

Despite that Gaussian distribution is commenly adopted to model noise, non-Gaussian distributed noise

is unavoidable in practice. For instance, the existence of non-line-of-sight (NLOS) propagation and signal

interference [7–9, 11] in real situations can introduce outliers into the BR measurements. However, the

ℓ2-norm based algorithms are not robust to gross errors. The reason is that the loss caused by outliers

is magnified by the ℓ2-norm and thus the optimization is dominated by the outliers [12]. As a result,

the localization performance of the ℓ2-norm based approaches is degraded when the BR measurements are

contaminated by anomalies.

To resist outliers, a mainstream idea is to suppress or reduce their influence by adopting robust loss

functions [7, 9, 10, 13–17], such as ℓp-norm (0 ≤ p < 2) and its variants [9, 14, 15, 18], and the maximum

correntropy criterion [7]. It is worth mentioning that the ℓ1-norm based formulation [9, 14], known as

least absolute deviation, corresponds to the maximum likelihood estimation under Laplacian noise. One

can also develop outlier detection techniques such that the target location is determined using normal BR

measurements only [8, 19, 20]. Besides, it is reported that only a small proportions of data are typically

corrupted by anomalies [12, 21, 22]. Inspired by this, some researchers explore the sparsity of outliers

and model them by introducing auxiliary variables [23–25]. For example, the Gaussian mixture noise is

considered a sparse noise embedded into a dense Gaussian noise in [25]. Then, the sparse component is

modeled by a auxiliary variable, while the small dense noise is addressed according to the LS concept. To

measure the sparsity of the auxiliary variable, the ℓ0-norm is the accurate metric that counts the number of

its nonzero entries [25–27]. However, the ℓ0-norm is intractable because of its discontinuous and nonconvex

nature [26, 27], making the ℓ1-norm prevail for measuring sparsity [27, 28].

As discussed above, most existing localization algorithms require that the noise complies with the assumed

distribution. That is, these methods assume that the BR measurements are contaminated by one certain

kind of noise only. When the practical noise violates the original assumed distribution, their localization

performance degrades severely. For example, the ℓ2-norm based algorithms perform well under Gaussian

noise, while their localization accuracy is degraded under impulsive noise. Similarly, the frameworks built

on robust loss functions can attain good performance under impulsive noise, while they become inferior to

the ℓ2-norm based algorithms in the presence of Gaussian noise. In addition, several existing algorithms also

require tweaking hyperparameters, which might be time-consuming. For example, to achieve satisfactory

localization accuracy, ℓp-norm based approaches need to tweak the p value regarding various noise intensities.

The process of hyperparameter tuning further restricts the practical applicability of the existing algorithms.

Hence, adaptive and robust localization frameworks that can attain high localization accuracy under both

Gaussian and impulsive noise without hyperparameter tuning are of significant interest.

In this paper, we propose an adaptive robust MIMO target localization method to achieve robustness

under the Gaussian noise and/or impulsive noise without tweaking hyperparameters. In detail, the MIMO

target localization task is equipped with the capped Frobenius norm (CFN) [29–31] based objective function.
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The CFN is a truncated ℓ2-norm function, where an upper bound serves as the threshold to differentiate the

normal and outlier-contaminated elements. Then, the normalized median absolute deviation is employed

to adaptively determine the upper bound for CFN. Although CFN is nonsmooth and nonconvex, we trans-

form it into a tractable problem in the form of regularized ℓ2-norm optimization using the half-quadratic

theory [32–34]. Afterwards, we incorporate the alternating optimization (AO) [35–38] with the majorization-

minimization (MM) algorithm [39–41] to solve the resultant problem. In particular, we devise closed-form

solutions for both subproblems of the proposed AO-based algorithm. Moreover, the convergence of objective

function value generated by the suggested algorithm is presented.

The remainder of this work is arranged as follows. Section 2 provides backgrounds for the conventional

ℓ2-norm based methods and several robust MIMO localization formulations. The proposed robust adaptive

framework along with its optimization details are outlined in Section 3. Section 4 includes experimental

results. Finally, conclusions are drawn in Section 5.

Notation: We use lower-case or upper-case letters to represent a scalars, while vectors and matrices are

denoted by bold lower-case and upper-case letters, respectively. The transpose operator is signified by (·)T.

Other mathematical symbols are defined upon their first appearance.

2. MIMO Radar Target Localization

Given a MIMO radar system with M transmitters and L receivers, the aim of this system is to locate

the unknown object at position zzz = [z1, z2]
T. Let the location of m-th transmitter be tttm = [xtm, y

t
m]T and

the location of l-th receiver be rrrl = [xrl , y
r
l ]

T, respectively. To locate the target, the m-th transmitter sends

out a signal of known pattern. Then, the signal is reflected by the target and the l-th receiver observes the

reflected signal from the target. With the orthogonality of transmitting waveforms [2, 15], the time delays

τm,l’s (m = 1, · · ·,M, l = 1, · · ·, L) of signal propagation can be obtained. In the ideal noiseless scenarios,

the range measurements d̃m,l’s can be calculated by

d̃m,l = cτm,l = ∥zzz − tttm∥2 + ∥zzz − rrrl∥2, (1)

where c represents the signal propagation speed. However, in practical positioning scenarios, noise is in-

evitable due to obstacles and reflection surfaces, yielding

dm,l = d̃m,l + em,l = ∥zzz − tttm∥2 + ∥zzz − rrrl∥2 + em,l, (2)

where dm,l is the noisy BR measurements including noise and em,l denotes the noise obeying a certain

distribution, such as Gaussian distribution [1, 4, 6], Laplace distribution [9, 14] , and so on [7, 15].

When the noise is zero-mean Gaussian-distributed, the target localization problem can be formulated

as the following ℓ2-norm based unconstrained optimization problem [1, 4, 6], viz., the least squares (LS)

problem:

min
zzz

M∑
m=1

L∑
l=1

(dm,l − ∥zzz − tttm∥2 − ∥zzz − rrrl∥2)2. (3)

However, non-Gaussian noise such as impulsive noise or outliers is frequently encountered in real-world

scenarios. In such cases, if the LS-based model (3) is adopted, the localization accuracy will be degraded
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severely. To achieve robustness against outliers, we can reformulate the target localization problem with a

robust objective function ψ(·), resulting in

min
zzz

M∑
m=1

L∑
l=1

ψ(dm,l − ∥zzz − tttm∥2 − ∥zzz − rrrl∥2), (4)

where ψ(·) is less sensitive to outliers compared to the ℓ2-norm. For instance, selecting ℓ1-norm as the

objective function [9, 14] presents

min
zzz

M∑
m=1

L∑
l=1

|dm,l − ∥zzz − tttm∥2 − ∥zzz − rrrl∥2|, (5)

which can lead to the maximum likelihood estimation for the Laplacian noise.

In addition, for general non-Gaussian noise scenarios where the noise distribution is unknown, the ℓp-

norm with 0 ≤ p < 2 [15] or the maximum correntropy criterion [7] can be employed for outlier rejection.

Taking the ℓp-norm as an example, the target localization task is reformulated as the following ℓp-norm

minimization problem [15]:

min
zzz

M∑
m=1

L∑
l=1

|dm,l − ∥zzz − tttm∥2 − ∥zzz − rrrl∥2|p, (6)

where 0 ≤ p < 2. It is worth mentioning that the idea behind the robust function-based formulation is to

suppress or reduce the influence of impulsive noise and outliers.

As previously discussed, both formulations, i.e., models (3) and (4), require that the noise follows the

assumed distribution; otherwise, their performance degrades greatly. In detail, the ℓ2-norm-based formula-

tion (3) is superior to formulation (4) under Gaussian noise, while its performance is degraded severely in the

presence of impulsive noise or outliers. Conversely, though formulation (4) improves localization accuracy

due to its robustness against outliers in non-Gaussian noise cases, it becomes inferior to formulation (3)

under Gaussian noise. In addition, tuning hyperparameters to address different noise intensities is required

for ψ(·) in general, which can be time-consuming. For instance, when ψ(·) is the ℓp-norm (0 ≤ p < 2),

selecting appropriate p remains a challenge across various noisy scenarios.

On the other hand, one alternative framework is to achieve error reduction in the presence of anomalies

by introducing a single scalar parameter ε, known as the balancing parameter [13, 17]. In general, the

balancing parameter based algorithm aims at solving the following unconstrained optimization problem:

min
zzz,ε

M∑
m=1

L∑
l=1

(dm,l − ∥zzz − tttm∥2 − ∥zzz − rrrl∥2 − ε)
2
, (7)

where the loss function is smooth in the form of ℓ2-norm. Note that (7) approximates bias errors of outliers

across multiple transmission paths with a single estimation variable. Hence, balancing parameter based

algorithms can achieve excellent localization results when the magnitudes of bias errors are even across

various transmitter-target-receiver paths. However, outlier-inducing bias errors typically vary in scale across

different transmission paths in practice, which diminishes the preference for balancing parameter based

algorithms.
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3. Algorithm Development

3.1. Problem Formulation

In order to attain good localization performance under both Gaussian and impulsive noise, we suggest

utilizing the capped Frobenius norm [29–31], termed as CFN, given by:

∥yyy∥CF =

√√√√ K∑
i=1

φλ(yi), (8)

where φλ(yi) = min(y2i , λ
2), and λ > 0 is the upper bound serving as the threshold to differentiate the

normal and anomaly-polluted entries. It is observed that CFN performs the same as the ℓ2-norm for the

components lower than λ in absolute value. Otherwise, CFN assigns an equal loss value to entries larger

than λ in absolute value. In this way, CFN-based formulation is able to resist both Gaussian noise and

impulsive noise once λ is selected properly. Besides, λ is crucial to our CFN-based formulation in terms of

effectiveness and adaptivity. In the sequel, we will introduce an automatic selection strategy for λ based on

robust statistics [42].

Combining CFN with the MIMO target localization yields the following

min
zzz

M∑
m=1

L∑
l=1

φλ(dm,l−∥zzz−tttm∥2−∥zzz − rrrl∥2) (9)

= min
zzz

M∑
m=1

L∑
l=1

min
(
(dm,l−∥zzz−tttm∥2−∥zzz − rrrl∥2)2, λ2

)
. (10)

Since MIMO target localization is highly nonconvex and nonlinear, introducing the nonconvex and nons-

mooth CFN makes (10) more challenging and intractable. To convert (10) into a tractable problem, we

leverage the half-quadratic theory [32–34].

Theorem 1. [31] Let φλ(y) = min(y2, λ2). There is a function ϕλ(n), such that

min
y

φλ(y) = min
y,n

(y − n)2 + ϕλ(n), (11)

where

ϕλ(n)=

−(λ− |n|)2 + λ2, |n|<λ

λ2, |n|≥λ
. (12)

In addition, (y − n)2 + ϕλ(n) is a convex function of n.

Applying Theorem 1 to (10), the CFN-based robust MIMO radar target localization can be reformulated

as

min
zzz,nnn

M∑
m=1

L∑
l=1

(dm,l−∥zzz−tttm∥2−∥zzz−rrrl∥2−nm,l)
2
+ϕλ(nm,l) (13)

where nnn = [n1,1, · · ·, n1,L, · · ·, nM,1, · · ·, nM,L]
T is the auxiliary variable. Compared to (10), the objective func-

tion of (13) is a trackable ℓ2-norm based function with regularization. Then, the optimization is performed

in the enlarged parameter space of zzz and nnn.
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3.2. Proposed Algorithm

This subsection elaborates on the proposed algorithm for (13). Denote the objective function of (13) as

L(zzz,nnn). Then, we adopt AO [35–38] as the solver to tackle (13), yielding the following alternatingly iterative

scheme

zzzk+1 = arg min
zzz

L(zzz,nnnk), (14a)

nnnk+1 = arg min
nnn

L(zzzk+1,nnn). (14b)

It is seen that AO updates only one of the variables, while the other one is fixed. Since the localization

problem is of high nonlinearity and nonconvexity, updating only a subset of variables at each step can

facilitate mitigating optimization difficulties and reducing computational complexity. In general, the AO

continues until the preset convergence condition is met. For instance, the AO stops iterating when the

relative error of variables between two successive iterations is under a given threshold. It should also be

noted that once the subproblems stated in (14a) and (14b) have closed-form solutions, the AO method

becomes highly efficient. However, if iterative procedures are required to solve these subproblems, efficiency

may significantly decrease. We term the proposed algorithm (14) as CFN-AO.

(1) update of zzzk+1

We first tackle the subtask (14a) for updating zzz. Since nnn is fixed as the solution obtained from the

(k − 1)-th iteration, namely, nnnk, the objective of (14a) can be expanded as

L(zzz,nnnk) =
M∑

m=1

L∑
l=1

[
δ2m,l − 2δm,l(∥zzz − tttm∥2 + ∥zzz − rrrl∥2)

+2∥zzz − tttm∥2∥zzz − rrrl∥2 + ∥zzz − tttm∥22 + ∥zzz − rrrl∥22
]
, (15)

with δm,l = dm,l − nkm,l. Note that conventional gradient-based algorithms cannot be adopted to solve this

problem due to ∥zzz − tttm∥2’s, ∥zzz − rrrl∥2’s, and 2∥zzz − tttm∥2∥zzz − rrrl∥2’s. Because when we take derivative with

respect to zzz, the ℓ2-norm based terms ∥zzz − tttm∥2’s and ∥zzz − rrrl∥2’s become the denominators. Once the

target is near one of the transmitters or receivers, the corresponding denominator can be approximately

zero, leading to numerical instability.

To achieve stable and efficient optimization, we solve the problem in (14a) via the MM algorithm [39–41].

The MM minimizes a majorizer of the original objective function, i.e., surrogate function, rather than the

original objective function in each iteration. Generally speaking, the surrogate function is designed to tightly

upper bound the original objective function. Note that the challenges in solving (14a) arise from the ℓ2-norm

based nonsmooth terms and nonconvex cross terms. Hence, we propose linearizing and convexifying these

terms according to the following two lemmas:

Lemma 1. [41] With a constant vector xxx0, the nonsmooth function f1(yyy)=−∥yyy − xxx0∥2 is upper bounded

by f̃1(yyy|ỹyy) for any ỹyy, i.e., f1(yyy) ≤ f̃1(yyy|ỹyy), where f̃1(yyy|ỹyy) is a linear function of yyy listed as follows:

f̃1(yyy|ỹyy) = − (yyy − xxx0)
T(ỹyy − xxx0)

∥ỹyy − xxx0∥2
. (16)
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Lemma 2. [41] Given nonconvex function f2(yyy) = 2∥yyy − xxx1∥2∥yyy − xxx2∥2, where xxx1 and xxx2 are constant

vectors. Then, f2(yyy) is majorized by f̃2(yyy|ỹyy) for any ỹyy, i.e., f2(yyy) ≤ f̃2(yyy|ỹyy), where f̃2(yyy|ỹyy) is a convex

function of yyy in the following form:

f̃2(yyy|ỹyy) =
∥ỹyy − xxx2∥2
∥ỹyy − xxx1∥2

∥yyy − xxx1∥22 +
∥ỹyy − xxx1∥2
∥ỹyy − xxx2∥2

∥yyy − xxx2∥22. (17)

Now we elaborate on the details for addressing (14a) according to the MM principle. Given zzzk that is

obtained from (k − 1)-th iteration. Then, according to Lemma 1, the nonsmooth terms ∥zzz − tttm∥2’s and

∥zzz − rrrl∥2’s can be linearized respectively as:

−2δm,l∥zzz − tttm∥2 ≤ −2(zzz − tttm)Tγγγkm,l, (18)

−2δm,l∥zzz − rrrl∥2 ≤ −2(zzz − rrrl)
Tβββk

m,l, (19)

with

γγγkm,l =
δm,l(zzz

k − tttm)

∥zzzk − tttm∥2
and βββk

m,l =
δm,l(zzz

k − rrrl)

∥zzzk − rrrl∥2
. (20)

As for the cross terms, applying Lemma 2 leads to the following inequality:

2∥zzz− tttm∥2∥zzz− rrrl∥2 ≤ P k
m,l∥zzz− tttm∥22+ Ck

m,l∥zzz− rrrl∥22, (21)

where

P k
m,l =

∥zzzk − rrrl∥2
∥zzzk − tttm∥2

and Ck
m,l =

∥zzzk − tttm∥2
∥zzzk − rrrl∥2

. (22)

Finally, combining (15) and (18)-(22) presents us the surrogate function L̃(zzz,nnnk|zzzk) of L(zzz,nnnk), given as:

L̃(zzz,nnnk|zzzk)=
M∑

m=1

L∑
l=1

[
δ2m,l−2(zzz−tttm)Tγγγkm,l−2(zzz−rrrl)Tβββk

m,l

+P k
m,l∥zzz−tttm∥22+Ck

m,l∥zzz−rrrl∥22+∥zzz−tttm∥22+∥zzz−rrrl∥22
]
, (23)

such that L(zzz,nnnk) ≤ L̃(zzz,nnnk|zzzk) is satisfied and the equality holds only when zzz = zzzk.

It is clear that the objective function in (23) is linear and differentiable with respect to zzz. Hence, by

setting the gradient with respect to zzz to zero, namely, ∇zzzL̃(zzz,nnnk|zzzk) = 000, we can achieve the closed-form

solution to zzz as

zzzk+1 =

M∑
m=1

L∑
l=1

[(1 + P k
m,l)tttm + (1 + Ck

m,l)rrrl + γγγkm,l + βββk
m,l]

M∑
m=1

L∑
l=1

(2 + P k
m,l + Ck

m,l)

. (24)

(2) update of nnnk+1

Once zzzk+1 is obtained by solving (14a), it is utilized to update nnn by resolving (14b). Specifically, the

objective function of (14b) for updating nnn can be written as

L(zzzk+1,nnn) =

M∑
m=1

L∑
l=1

(sm,l − nm,l)
2 + ϕλ(nm,l)
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= ∥sss−nnn∥22 + ϕλ(nnn) (25)

where sm,l = dm,l − ∥zzzk+1− tttm∥2− ∥zzzk+1− rrrl∥2 is the distance residual between dm,l and ∥zzzk+1− tttm∥2 +

∥zzzk+1− rrrl∥2, and sss is the collection of all the distance residuals, i.e., sss = [s1,1, · · ·, s1,L, · · ·, sM,1, · · ·, sM,L]
T.

That is, the updating of nnn is simplified as the regularized ℓ2-norm based problem with the following form:

nnnk+1 = argmin
nnn

∥sss−nnn∥22 + ϕλ(nnn). (26)

Note that (26) can be seen as a proximal problem. We derive a close-form solution for (26) as shown in

Lemma 3.

Lemma 3. For the following optimization problem

nk+1 = argmin
n
ψλ(n) = argmin

n
(s− n)2 + ϕλ(n). (27)

Its optimal solution is Pλ(s), defined as

nk+1 = Pλ(s) =

0, |s| < λ,

s, |s| ≥ λ.

(28)

Proof: Plugging (12), namely, ϕλ(n), into (27) yields

nk+1 =


argmin

n
(s− n)2 − (λ− |n|)2 + λ2, |n| < λ,

argmin
n

(s− n)2 + λ2 |n| ≥ λ,

=


argmin

n
s2 − 2n(s− λ), 0 ≤ n < λ,

argmin
n

s2 − 2n(s+ λ), −λ < n < 0,

argmin
n

(s− n)2 + λ2, |n| ≥ λ,

=

0, |s| < λ,

s, |s| ≥ λ.

(29)

Specifically, when |s| ≥ λ, ψλ(n) is quadratic and its subgradient is 2(n− sk+1) = 0, such that nk+1 = s

is the minimizer. When −λ < nk+1 < λ, ψλ(n) is linear on two intervals. And it is easy to know that

nk+1 = 0 is the minimizer in the feasible region. Since ψλ(n) is convex according to Theorem 1, (29) is an

optimal solution to (27). The proof is complete. ■
In (26), nk+1

m,l only depends on sm,l, that is, nnn is separable. Therefore, according to Lemma 3, an optimal

solution to (26) is

nnnk+1 = Pλ(sss), (30)

where nnnk+1 can be achieved via performing hard thresholding in an entry-wise manner.

It is clear that nnnk+1 is influenced by the hyperparameter λ. We suggest updating λ adaptively along

iterations. In doing so, the time-consuming procedure of hyperparameter search is avoided. Besides, the

adaptive updating of λ could also improve the adaptivity of our algorithm in various noisy scenarios. To
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Algorithm 1 CFN-AO
Input: ζ, tttm, and rrrl

Initialize: zzz0, nnn0, λ0, and k = 0

while not converged do

Calculate γγγkm,l, βββk
m,l according to (20)

Calculate P k
m,l, Ck

m,l according to (22)

Update zzzk+1 according to (24)

Calculate λ′ according to (32)

Calculate λk+1 according to (31)

Update nnnk+1 according to (30)

k = k + 1

end

Output: Optimal location ẑzz

guarantee convergence, λ is required to be nonincreasing along iterations. Hence, we exploit the following

adaptive updating scheme for λ:

λk+1 = min(λ′, λk), (31)

where λ′ is determined by a robust measure for standard deviation, namely, the normalized median absolute

deviation method [42]:

λ′ = ζ × 1.4826× Med(|sss− Med(sss)|). (32)

Here, ζ > 0 controls the confidence interval range, and Med(·) is the sample median operator. Since sss is

the collection of all the distance residual at k-th iteration, if the mean of sss is assumed 0, −λ < sm,l < λ

is considered as a confidence interval to identify anomalies. In the next section, the impact of ζ on the

localization performance will be studied.

Moreover, since our CFN-AO optimizes zzz and nnn in an alternating manner, we suggest computing λk+1

prior to updating nnnk+1 for better localization accuracy. That is, once zzzk+1 is obtained, we use zzzk+1 to

compute sss and then determine λk+1. Finally, the update of nnnk+1 is achieved using λk+1. We summarize the

proposed approach in Algorithm 1.

3.3. Convergence Analysis and Computational Complexity

For the convergence, we have that the sequence of objective value generated by the devised CFN-AO

converges to a limit point.

Specifically, we have L(zzzk+1,nnnk+1) ≤ L(zzzk+1,nnnk) due to the optimality of nnnk+1 to (14b). Since L(zzz,nnnk)

is majorized by L̃(zzz,nnnk|zzzk), the inequality L(zzzk+1,nnnk) ≤ L̃(zzzk+1,nnnk|zzzk) and the equality L̃(zzzk,nnnk|zzzk) =

L(zzzk,nnnk) are valid according to MM framework. Finally, zzzk+1 minimizes the surrogate function L̃(zzz,nnnk|zzzk),

ensuring the validity of the inequality L̃(zzzk+1,nnnk|zzzk) ≤ L̃(zzzk,nnnk|zzzk). Based on the above facts, we achieve
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that L(zzzk+1,nnnk+1) ≤ L(zzzk+1,nnnk) ≤ L̃(zzzk+1,nnnk|zzzk) ≤ L̃(zzzk,nnnk|zzzk) = L(zzzk,nnnk). Therefore, the objective

value generated by CFN-AO is monotonically nonincreasing.

Besides, as given in (13), L(zzz,nnn) is a linear combination of the ℓ2-norm based terms (dm,l − ∥zzz − tttm∥2 −

∥zzz − rrrl∥2 − nm,l)
2 and the regularization terms ϕλ(nm,l). Therefore, L(zzz,nnn) is lower bounded by zero. As

a result, combining the monotonically nonincreasing and boundedness property of objective value leads to

the convergence conclusion.

At each iteration, the complexity for updating zzzk+1 is O(ML). The computational complexity for

updating λk+1 is dominated by the sample median operator, with the complexity of ML log(ML). The

update of nnnk+1 is achieved by conducting element-wise comparison between |sm,l| and λk+1, which requires

a complexity of O(ML). In summary, the total complexity of CFN-AO is O (MLlog(ML)) per iteration.

4. Numerical Results

This section evaluates the localization performance of the proposed CFN-AO. The competing algorithms

are ℓ1-norm Lagrange programming neural network (ℓ1-LPNN) [9], iterative message passing (IMP) [14],

ℓp-norm improved iterative reweighting (ℓp-IIRW with p = 1.5) [15], balancing parameter based difference-of-

convex programming (BP-DCP) [13], and balancing parameter based Lagrange programming neural network

(BP-LPNN) [16].

4.1. Experimental Settings

We consider a distributed MIMO radar system with 8 transmitters and 8 receivers, viz., M = L = 8. The

locations of the transmitters and receivers are ttt1 = [−650,−300]T, ttt2 = [−650, 300]T, ttt3 = [−150,−450]T,

ttt4 = [−150, 450]T, ttt5 = [400,−150]T, ttt6 = [400, 150]T, ttt7 = [250, 550]T, ttt8 = [250,−550]T, rrr1 = [0, 0]T,

rrr2 = [−300, 300]T, rrr3 = [300,−300]T, rrr4 = [250, 0]T, rrr5 = [0, 250]T, rrr6 = [550, 550]T, rrr7 = [0,−600]T,

rrr8 = [−600, 0]T, respectively. The target is placed at zzz∗ = [300, 200]T.

Both Gaussian and non-Gaussian noisy scenarios are considered, where non-Gaussian noise is modeled

by Gaussian mixture model (GMM), Exponential distribution, and Laplace distribution, respectively. The

GMM represents a distribution as a combination of multiple Gaussian distributions with different mean and

variance. To model impulsive noise, the GMM is generally composed of two Gaussian distributions, of which

the probability density function is

p(x) = c1N (x|µ1, σ
2
1) + c2N (x|µ2, σ

2
2)

where N (x|µi, σ
2
i ) represents the i-th (i = 1, 2) Gaussian distribution with mean µi and variance σ2

i , c1 and

c2 are the weights of each Gaussian component satisfying c1 + c2 = 1, and σ2
1 ≫ σ2

2 . In our experiments, we

choose c1 = 0.1, c2 = 0.9, µ1 = µ2 = 0, and σ1 = 10σ2. By doing so, the noise generated by GMM can be

considered a sparse impulsive noise embedded into a dense noise.

As for Laplace and Exponential distribution, the probability density function are determined by the

variance/standard deviation only. Hence, we will clarify the parameters used to generate Laplacian and

Exponential noise in the following subsections, respectively.
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Figure 1: Localization results of CFN-AO versus ζ under

Gaussian noise.
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Figure 2: Localization results of CFN-AO versus ζ under

GMM noise.

In the experiments, the noise is generated and added to the BR measurements dm,l’s (m = 1, · · ·,M, l =

1, · · ·, L) according to the following procedure. We randomly sample points from a specific distribution such

as Gaussian and Laplace distribution as the noise first, and then the noise is added to BR measurements

directly. To measure the level of the noise in comparison to that of the signal, the generalized signal-to-noise

ratio (GSNR) is adopted [16, 43], defined as

GSNR = 10log10

(∑M
m=1

∑L
l=1 (∥zzz − tttm∥2 + ∥zzz − rrrl∥2)2

MLσ2

)

where σ2 is the variance of the noise.

The root mean square error (RMSE) is employed as the metric for performance comparison, given by:

RMSE =

√√√√ 1

N

N∑
i=1

∥ẑzz(i) − zzz∗∥22,

where N is the number of Monte Carlo runs, and ẑzz(i) is the estimated target position in the i-th Monte

Carlo run. In our experiments, we set N to 1000. In each trial, our CFN-AO is terminated when the relative

error of the estimated target positions between two successive iterations is smaller than or equal to ϵ = 10−4,

namely,

∥zzzk − zzzk−1∥2
∥zzzk−1∥2

≤ ϵ.

4.2. Impact of ζ on Localization Performance

This subsection investigates the impact of ζ in (32) on the localization accuracy. We take Gaussian noise

and GMM noise as examples, with different noise intensities and ζ varies from 1 to 6 with a step size of

0.5. The results are given in Figs. 1 and 2. It is observed that RMSE, under Gaussian noise, decreases with

increasing ζ and then remain stable when ζ ≥ 3. Under GMM noise, RMSE shows a decrease trend first

and subsequently grows with enlarging ζ. As mentioned before, ζ controls the confidence interval. Thus, a

smaller ζ results in a narrower confidence interval, and more entries are considered as outlier-contaminated

11
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Figure 4: Localization results comparison of various algo-

rithms under GMM noise.

data. On the contrary, a larger ζ leads to a wider confidence interval and thus more entries are classified

as normal data. For Gaussian noise, since there are no anomaly-contaminated entries, a larger ζ can lead

to better localization performance. For impulsive noise, a small ζ causes some normal data to be classified

as anomaly-contaminated entries, while a very large ζ leads to misclassification of outlier-polluted entries as

normal data. Similar behaviors can be observed under Exponential and Laplacian noise scenarios as well.

To conclude, we set ζ = 3 throughout the following experiments. Besides, the noise is unknown in general

and can be any kind of Gaussian or non-Gaussian noise in practice. According to our simulation results

under different noisy scenarios, ζ = 3 is sufficient to achieve satisfactory localization accuracy. That is, we

can select ζ as 3 in practice as well.

4.3. Performance Comparison

This subsection assesses the performance of our proposed algorithm under various noise situations.

1) Performance Comparison under Gaussian Noise: We first compare the proposed CFN-AO with the

competing algorithms as well as the Cramér-Rao Lower Bound (CRLB) under Gaussian noise. The standard

deviation σ varies from 100 to 103, namely, σ ∈ {100, 100.5, 101, 101.5, 102, 102.5, 103} m, corresponding to

GSNR ∈ {62, 52, 42, 32, 22, 12, 2} dB. The RMSE results versus various GSNRs are shown in Fig. 3. It is

observed that BP-DCP, CFN-AO, and ℓp-IIRW are comparable at all noise levels, which is prior to other

methods. The two ℓ1-norm based algorithms, namely, ℓ1-LPNN and IMP, have comparable RMSE values

when GSNR ≥ 12, while IMP is better than ℓ1-LPNN when GSNR = 2. In addition, our CFN-AO has close

RMSE to CRLB at all noise intensities, except that it is only slightly inferior to BP-DCP at GSNR = 2.

2) Performance Comparison under Impulsive Noise: Apart from Gaussian noise, we compare the perfor-

mance of different algorithms under impulsive noise, including GMM noise, Exponential noise, and Laplacian

noise. It is worth mentioning that Exponential noise is commonly exploited to generate NLOS errors in the

presence of NLOS propagation.

For GMM, the GSNR ranges from 14dB to 30dB with an increment of 2dB, while the standard deviation

12
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Figure 6: Localization results comparison of various algo-

rithms under Laplacian noise.

are σ ∈ {100, 100.5, 101, 101.5, 102, 102.5, 103, 103.5, 104} m for Exponential and Laplacian noise. That is, the

GSNR’s are {62, 52, 42, 32, 22, 12, 2,−8,−18} dB for Exponential and Laplacian noise. Under Exponential

or Laplacian noise, one of the transmitters or receivers is assumed to be influenced by outliers in our

experiments. Specifically, we generate outliers using Exponential or Laplace distribution first. Then, the

outliers are added to BR measurements associated to one randomly selected transmitter or receiver. Besides,

Gaussian noise with standard deviation 10 m is added to the BR measurements as well. The RMSE results

under GMM noise, Exponential noise, and Laplacian noise are shown in Figs. 4, 5, and 6, respectively.

From Fig. 4, namely, under the GMM noise, we observe that CFN-AO leads its competitors with a clear

margin at all noise levels. That is, our CFN-AO gives out the lowest RMSE values at all noise intensities.

The IMP and ℓ1-LPNN have comparable localization accuracies, while the ℓp-IIRW is inferior to the two

ℓ1-norm based algorithms. The BP-DCP is better than BP-LPNN, whereas the BP-LPNN presents the

worst RMSE values at all GSNR levels. In addition, there is a huge gap between the BP-based algorithms,

viz., BP-DCP and BP-LPNN, and other comparison algorithms.

From Figs. 5 and 6, it is seen that each algorithm exhibits similar behavior in the presence of Exponential

and Laplacian noise. Thus, we take the Exponential noise as an example to analyze. When GSNR > 42,

all the algorithms perform very similarly with comparable RMSE around 2 m. The reason might be that

the standard deviation of Exponential noise is even smaller than that of Gaussian noise. As a result, the

exponential noise can be considered as Gaussian. Thus, the behavior of all algorithms is similar to that

under the Gaussian noise scenario.

However, the RMSE values of BP-DCP, BP-LPNN, and ℓp-IIRW all are over 10 m when GSNR ≤ 42,

increasing rapidly along with the decrease of GSNR. Though the RMSEs of IMP and ℓ1-LPNN also increase

as GSNR decreases, their RMSE values remain smaller than 10 m across all noise intensities. For our CFN-

AO, its RMSE shows an increasing trend and is superior to its counterparts when GSNR ≤ 42. A possible

reason for such a trend is that, with the decrease of GSNR, i.e., the growth of σ, the magnitudes of outliers

are enlarged greatly, making the outliers easy to be classified.
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Table 1: Runtime comparison in different noise.

Algorithms Runtime (s) in various noise scenarios

Gaussian GMM Exponential Laplacian

CFN-AO 0.0071 0.0072 0.0099 0.0115

ℓ1-LPNN 0.0170 0.0099 0.0180 0.0240

IMP 0.0022 0.0016 0.0021 0.0022

ℓp-IIRW(p = 1.5) 0.3502 0.3213 0.4811 0.5774

BP-DCP 0.4501 0.3651 0.6668 0.7593

BP-LPNN 0.0110 0.0092 0.0404 0.0325

3) Runtime Comparison: To quantitatively assess the computational efficiency of various algorithms, we

tabulate the average running time for all noisy scenarios in Table 1. From the table, it is observed that the

efficiency of our CFN-AO is only inferior to that of IMP among all competing methods.

5. Conclusion

In this article, we develop a framework for robust adaptive MIMO target localization based the capped

Frobenius norm. The normalized median absolute deviation strategy is exploited to adaptively determine the

upper bound for the capped Frobenius norm. Based on the half-quadratic theory, we convert the minimization

of the nonconvex and nonsmooth capped Frobenius norm into the tractable form of regularized least squares.

Then, the AO method is adopted to address the resultant problem, yielding an efficient algorithm termed

as CFN-AO. In particular, both subtasks of the suggested CFN-AO have closed-form solutions. We show

that the objective value of CFN-AO converges to a limit point. Experimental results demonstrate that the

CFN-AO achieves higher localization accuracy in comparison with five popular algorithms under impulsive

noise. Besides, its performance is comparable to the ℓ2-norm based method without tuning parameter in

the presence Gaussian noise.
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