Neural Information
Processing Systems
Foundation

Discrimination-aware Channel Pruning for Deep Neural Networks

Zhuangwei Zhuang*, Mingkui Tan*', Bohan Zhuang*, Jing Liu*, Yong Guo, Qingyao Wu, Junzhou Huang, Jinhui Zhu' Tencent

Al Lab

SUB cpuce LUNEY

EXPLORING PRUNING RATE AND A

BACKGROUND AND MOTIVATION DCP ARCHITECTURE GREEDY ALGORITHM

Channel pruning reduces the model size and speeds up the inference | ? bt i t t t B . Al 20 rithm 2 Gree dy algorithm for channel selection Table 4: Comparisons on ResNet-18 and ResNet- Table 5: Pruning results on ResNet-56 with dit-
. . . e . Baselin = X°l 210 = = = IS &S : : :
by removing redundant channels directly. Existing methods include: Network S 1S S 5 3 L, j,% — — >V with different pruning rates. We report the top-1-ferent A on CIFAR-10. - ,
- wh - - - < B Input: Training data, model M, parameters x;, and e. and top-5 error (%) on ILSVRC-12. A Traming err.  Testing err.
¢ Training-from-scratch methods: select channels to minimize the "_,g (g 2 (8.[x Output: Selected channel subset .4 and model parameters W 4. Network — (bﬁ = Tog%_ 13/6T/<ili503ﬂ‘- 886 u only) ;.Z? 3,53
. . . . — Fine-tuni S5 OP| 2 = SIFPl g, YEURE o o (DASClINe : : : : :
cross-entropy loss with sparsity regularization [1]. —+ Chamnel Selection g 5[ v I %E == ~;§ ="Ls Initialize A <+ (), and t = 0. 30% 30.79/11.14 0.005 6.86 11.24
L : & g = U & L while (stopping conditions are not achieved) do ResNet-18 50% 32.65/12.40 0.01 6.36 11.00
e Reconstruction-based methods: select channels to minimize the re- — — — — /(2 (1 Compute gradients of £L w.r.t. W: G = 0L/0W. 70% 35.88/14.32 8(1)5 ‘31411533 gg‘;

. e | xlzlo ]l |3 > = 5| . B | 0% (baseline)  23.99/7.07 . . .
COnStI'l.ICtIOII error of feature maps between the pruned model and a Network S sS—==3 S < e Find the channel £ = argmax,, 4{||Gj||F }- R Ner S0 0% 23.60/6.93 05 5 17 2 11
pre-trained model [2]. - L - — & Let A < AU {k}. 50% 25.05/7.68 1.0 2.10 7.84
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Limitations of existing channel pruning methods: Lett <—t+ 1. e The performance of the pruned models go worse e The performance of the pruned model im-
o We insert P discrimination-aware losses {L£%}]_, (cross-entropy end while with the increase of pruning rate. proves with increasing A.

e ResNet-50 with pruning rate of 30% outper- e Both the reconstruction error and the cross-
forms the pre-trained model.

¢ Training-from-scratch methods: are difficult to converge.

loss) evenly and split the network into P 4 1 stages.

entropy loss contribute to better performance.

e Instead of solving problem (3), DCP uses a greedy algorithm to
optimize W w.r.t. the selected channels by minimizing:

minyw L(W), s.t. Wy =0, (4)

e Reconstruction-based methods: ignore the discriminative power. e For each stage, we do fine-tuning using ﬁ; and L ; to improve the

discriminative power of intermediate layers.

EFFECT OF THE STOPPING CONDITION
Table 5: Effect of € for channel selection over VGGNet on CIFAR-10.

e Both methods result in apparent drop in accuracy.

e We conduct discrimination-aware channel pruning for each layer where W 4. denotes the submatrix indexed by .A°¢ which is the

Our solution: propose a discrimination-aware channel pruning

(DCP) scheme to choose channels with true discriminative power. involved in the considered stage by solving following problem: complementary set of A. Loss e | Testingerr. (%) #Param.| #FLOPs |
: 0.1 12.68 152.25 % 277.39 %
minw L(W) = Ly(W) +ALg(W), st |[[W]lzo < k1, (3) L 0.0l 6.63 31.28 5.35x%
0.001 5.43 15.58 2.86

STOPPING CONDITIONS

e Given a predetined parameter ;, Algorithm 2 will be stopped it
HW‘ 2.0 > Ki.

e Since L is convex, L(W?*) will monotonically decrease with iteration
index t in Algorithm 2. The number of selected channels can be
automatically determined by following stopping condition:

LIW!) = LIWH]/L(W?) <,

where L£(W?) is the joint loss function with iteration ¢ and ¢ is a
tolerance value.

where ) balances the two terms, W is the model parameters of a
considered layer, £,;(W) is the reconstruction error, and £ (W) is
the cross-entropy loss.

CONTRIBUTIONS

o A smaller € leads to better performance of the pruned model.

e We propose a discriminative-aware channel pruning (DCP) scheme
to choose the channels with true discriminative power.

VISUALIZATION OF FEATURE MAPS

e We formulate the channel selection problem as an £ g-norm con-
strained optimization problem and propose a greedy method to
solve the resultant optimization problem using SGD.

CONVEXITY OF THE LOSS FUNCTION

Proposition 1. (Convexity of the loss function) Let W be the model
parameters of a considered layer. Given the mean square loss and the cross-
entropy loss, then the joint loss function L(W) is convex w.r.t. W.

e Extensive experiments demonstrate the etfectiveness of DCP.
(a) Input image (b) Feature maps of the pruned channels (c) Feature maps of the selected channels

e Feature maps of the pruned channels are less informative.

PROBLEM DEFINITION

¢ Channel Pruning prunes those redundant channels in W to save the
model size and accelerate the inference speed in Eq. (1)

DISCRIMINATION-AWARE CHANNEL PRUNING

RESULTS ON CIFAR-10 AND ILSVRC-12

Algorithm 1 Discrimination-aware channel pruning (DCP)
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O

Do Channel Selection for layer [ using Algorithm 2.
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at the:layer [. Given a predefined pruning rate n € (0,1), we can

e DCP achieves the best performance under the same acceleration rate.
calculate k; = |nc|.

e DCP performs channel pruning with (P + 1) stages. o School: South China University of Technology



