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Low-Rank Matrix Approximation of 2D Data 
 
 

Chapter Intended Learning Outcomes: 
 

(i) Realize that many real-world signals can be approximated 
using their lower-dimensional representation 

 

(ii) Understand singular value decomposition (SVD) and 

principal component analysis (PCA) and their relationship 

 
(iii) Able to apply SVD and PCA in relevant real-world 

applications 

 

(iv) Understand the basics of tensor decomposition and 

application 
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Real-World Signals as Low-Rank Matrices 
 

Many data in our real-world can be modelled as a low-rank 

matrix. 

 

The most direct scenarios correspond to two-dimensional (2D) 

data such as images. 

 

1D signals such as audio or financial data can be considered 

as column (or row) vectors of a matrix. 

 

Higher-dimensional or tensor signals can be unfolded to 
matrices. For example, a 3-D signal or 3rd-order tensor can 

be unfolded to a matrix of three possible forms. 

 
We may say tensor generalizes vector and matrix. 
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For gray-scale image, the gray level is based on 8-bit 
representation: 0 (black) to 255 (white): 

 
 

 
Source: https://www.researchgate.net/publication/330902210_The_visual_digital_turn_Using_neural_networks_to_study_historical_images/f igures?lo=1 
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Tensor unfolding illustration 

Source: Hong X., Xu Y., Zhao G. (2017) LBP-TOP: A Tensor Unfolding Revisit. In: Chen CS., Lu J., Ma KK. (eds) Computer Vision – ACCV 2016 Workshops. 

ACCV 2016. Lecture Notes in Computer Science, vol 10116. Springer, Cham 
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Analogously, vectorization refers to transforming a matrix to 
vector. For example, we can convert a matrix  to a 

column vector of length : 
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A matrix  has full rank if its rank is . If 

, this means that all the columns (or rows if ) are 

linearly independent. 
 

 has low rank if its rank is . This means 

that many columns (and rows) are linearly dependent, e.g.,  
 

 

 

What is the maximum possible rank for a matrix with 
this dimensions? 

 

Row #1:  
 

Row #2:  

Can you see the linearly dependency among columns? 
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Video can also be expressed as a matrix by converting each 
frame (matrix) as a vector, e.g., 
 

1 2 3
4 5 6

7 8 9
10 11 12

13 14 15
16 17 18

19 20 21
22 23 24

1
4
2
5
3
6

7
10
8

11
9

12

13
16
14
17
15
18

19
22
20
23
21
24

Frame #1 Frame #2 Frame #3 Frame #4

 
 

The background component in the video is of low rank. 
 

If the 4 frames are equal, what is the matrix rank? 
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Singular Value Decomposition (SVD) 
 

SVD is a useful tool to decompose a matrix : 
 

     (1) 

 

where  contains the left singular vectors , 

 contains the right singular vectors , 

 is diagonal matrix with singular values  on 

the diagonal with , and  is assumed. 
 

The singular vectors are orthogonal such that , 

 for . To ensure a unique set of ,  and  

are orthonormal, i.e., . 

 

, and  are unit-norm vectors. 
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If a 2D signal can be approximated with rank  , 

we can write: 
 

  (2) 

which is referred to as truncated SVD. 

 

Example 1 

Convert  in the form of SVD. 

 
Using MATLAB: 
>> X= [1 1 1 1 1; 1 2 1 2 1; 0 1 0 1 0; 1 0 1 0 1; 2 1 2 1 2]; 

>> [U, S, V] = svd(X) 
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U = 

   -0.4063   -0.0394   -0.9044    0.1089   -0.0590 

   -0.5612   -0.5568    0.2453   -0.4442   -0.3428 

   -0.1549   -0.5174    0.0733    0.2728    0.7928 

   -0.2515    0.4779   -0.0220   -0.6780    0.4981 

   -0.6578    0.4385    0.3406    0.5067   -0.0482 

 

S = 

    5.4989         0         0         0         0 

         0    2.1823         0         0         0 

         0         0    0.0000         0         0 

         0         0         0    0.0000         0 

         0         0         0         0    0.0000 

 

V = 

   -0.4609    0.3477   -0.8139    0.0649         0 

   -0.4258   -0.5645    0.0562    0.7049   -0.0000 

   -0.4609    0.3477    0.4070   -0.0324   -0.7071 

   -0.4258   -0.5645   -0.0562   -0.7049    0.0000 

   -0.4609    0.3477    0.4070   -0.0324    0.7071 
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It is clear that  is of rank 2 as there are only two nonzero 
singular values . As a result, the 

truncated SVD of  is exactly equal to : 

 

 

 

and it can be easily verified with  
>> U(:,1:2)*S(1:2,1:2)*V(:,1:2).' 
 

Also: 
>> (U(:,1)).'*U(:,2) 

ans =  -1.1102e-16 
 

>> (U(:,1)).'*U(:,1) 

ans = 1 
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Example 2 
Investigate if we can represent an image of rubber ducky of 

327 x 327 pixels using a low-rank approximation. 

 
 

Note that the original RGB color model is a tensor of 

dimensions 327 x 327 x 3 and we may just perform the SVD 
for each color separately. 
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>> img = imread('Rubber_Ducky.jpg'); 

for i = 1:3 

    [U(:,:,i),S(:,:,i),V(:,:,i)] = svd(im2double(img(:,:,i))); 

end 

r=10; 

    for i = 1:3 

       approx_img(:,:,i) = U(:,1:r,i) * S(1:r,1:r,i) * V(:,1:r,i).'; 

    end 

    imwrite(approx_img,sprintf('rgb_Rubber_Ducky_%d.png', r),'png'); 
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>> img = imread('Rubber_Ducky.jpg'); 

gray = rgb2gray(img); 

[U,S,V] = svd(im2double(gray)); 

r=10; 

approx_img = U(:,1:r)*S(1:r,1:r)*V(:,1:r).'; 

imwrite(approx_img,sprintf('Rubber_Ducky_%d.png', r),'png'); 

    
    

 

Here we see that truncated SVD can be used for data 
compression. If a gray scale image  can be 

approximated as a matrix of rank , then the data storage 
size will be reduced from  to . 
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How to choose an appropriate value of r? 
Can we get some ideas from the singular values? 
>> s=diag(S); 

>> stem(s); 

 
However, SVD may not be an effective compression scheme 

if the image data are not highly correlated. 
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Illustration of SVD as rotation and scaling 
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Truncated SVD can also be applied for noise reduction. 
 

Example 3 

When multiple receivers are used to collect a correlated 

signal in the presence of noise, SVD can be used for denoising. 

 

Consider a sinusoid   is received by 5 sensors and each 

sensor obtains 100 samples. As the sensor locations are 
different, each may receive: 
 

 
 

As a sinusoid can be represented as a linear combination of 

2 sinusoids of same frequency, e.g.,  

and , the matrix 

 constructed from sensor output as rows is of rank 
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2 in the absence of measurement noise. 
>> N=100; 

w=0.3; 

x1=sin(w.*(1:N)); 

subplot(5,1,1) 

stem(x1) 

x2=sin(w.*(1:N)+0.5); 

subplot(5,1,2) 

stem(x2) 

x3=sin(w.*(1:N)+1); 

subplot(5,1,3) 

stem(x3) 

x4=sin(w.*(1:N)+1.5); 

subplot(5,1,4) 

stem(x4) 

x5=sin(w.*(1:N)+2); 

subplot(5,1,5) 

stem(x5) 
>> X=[x1; x2; x3; x4; x5;]; 

>> rank(X) 

ans = 2 
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Hence a truncated SVD of  with  can represent the data 

without approximation. 
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In practical scenarios, noise  is present. 
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A noise-reduced version is:  
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Apart from direct observation, a standard performance 
measure is to use empirical mean square error (MSE): 
 

 
 

where  is the true value and  is the estimated value of . 
That is, MSE is a measure of average squared error. 
 

Consider the noisy raw data as the estimates, e.g.,  
 
x1=sin(w.*(1:N))+0.2*randn(1,N);%noise standard deviation 0.2 

 

which means that noise is zero-mean Gaussian distributed 
with power , we can compute the MSE: 
 

 
  

which aligns with the noise power value. 
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We repeat the MSE computation using the denoised data and 
obtain: 

 
 

From the MSE, the denoising performance is clearly 

demonstrated and we know how much noise is reduced in 

terms of MSE. 
 

Because of the random noise, slightly different numerical 

results will be obtained in each simulation run. 
 

Note also that we cannot obtain a zero MSE by denoising 

because the truncated SVD components 
 

 
 

also contain noise. 
 

Can you suggest how to get a smaller MSE?  
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This application may be referred to as subspace estimation. 
Here,  correspond to the signal subspace 

while correspond to the noise 

subspace. 

 

Hence the signal subspace can also be obtained from the 
truncated SVD with an appropriate value of : 

 

    

 

Note also that truncated SVD is the best low-rank matrix 
approximation in the least squares (LS) sense: 
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Principal Component Analysis (PCA) 
 

PCA is similar to truncated SVD but it is based on the 

eigenvalue analysis of the covariance of the observed data. 

 

Example 4 

Suppose there are 4 observed data vectors. We group them 

as a data matrix as: 

 

 

 

Compute the covariance matrix  for . 
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To compute the covariance matrix, we need to make the 
mean of each row 0. Note that each row can be considered 

as the same type of information or feature. The mean vector 

 is computed as: 
 

>> mean(X,2) 

    1.7500 

    1.7500 

    1.2500 

    2.0000 

    2.0000 

      1.0000 

 

>> bX=X-mean(X,2) 

    0.2500    0.2500   -0.7500    0.2500 

   -0.7500    1.2500   -1.7500    1.2500 

   -1.2500   -0.2500    1.7500   -0.2500 

    1.0000         0    1.0000   -2.0000 

   -1.0000    1.0000   -1.0000    1.0000 

           0   -1.0000         0    1.0000 
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Let the data matrix with zero-mean rows be . The 
covariance matrix  is computed as: 
 

 

 

>> C=bX*bX.'/4 

    0.1875    0.4375   -0.4375   -0.2500    0.2500         0 

    0.4375    1.6875   -0.6875   -1.2500    1.2500         0 

   -0.4375   -0.6875    1.1875    0.2500   -0.2500         0 

   -0.2500   -1.2500    0.2500    1.5000   -1.0000   -0.5000 

    0.2500    1.2500   -0.2500   -1.0000    1.0000         0 

           0         0         0   -0.5000         0    0.5000 

Each diagonal element of is the variance within a 
measurement type. 
 

Off-diagonal elements are covariances between all pairs of 

different types. If covariance is nonzero, there is correlation 
or redundancy while the two types are uncorrelated for zero 

covariance. 
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In general, suppose for each measurement vector, there are 
 types and we collect a total of   measurements. A data 

matrix  is formed and then its zero-mean row 

version  is computed. Then  is: 

 

                                                                                                                                 (3) 

 

Since  is square and symmetric such that , its 

eigenvalue decomposition (EVD) is: 

 

                                                                                         (4) 

where  is orthonormal and its column vectors are 

eigenvectors, while  with  being 

the eigenvalue for the th column. 
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Suppose , the principal components refer to 
the first  column vectors of , and the associated  

are variances or powers of the principal components. 

 

For simplicity but without loss of generality, we may ignore 

the scalar of  in (3) and assume  has zero mean along 

all the rows such that . Using (1) and the 

orthonormality of , it is easy to show that  can be 

computed from SVD of : 

 

                                          (5) 

 

That is,  and  or  (up to a scalar).  

 
This indicates that SVD operating on the data matrix is same 

as EVD operating on the covariance matrix. 
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Using a 2D geometric viewpoint, PCA means to find the best 
orthogonal basis: 

 
It is clear that the standard basis of  and  ( - and -

axis) is not good to represent the data points.  
 

Note that a basis is a minimal spanning set to represent all 
data in that space. For 2D space,  and  form a basis 

because any point  can be written as . 
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The basis in red lines is better in the sense that the direction 
(cf. eigenvector) is related to the data structure and length 

(cf. eigenvalue) is related to the importance. 

 

There are three assumptions in PCA: 

 

1. Linearity 

▪ Change of basis is linear operation. 

▪ But, some processes are inherently nonlinear. 
 

2. Large variances are most “interesting” 

▪ Large variance is “signal”, small is “noise”. 
▪ May not be valid for some applications. 

 

3. Principal components are orthogonal 
▪ Makes problem efficiently solvable. 

▪ But non-orthogonal may be better in some cases. 
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Applying PCA will be perfect when: 

 
The data can be better represented by another orthogonal 

basis. 
 

Longer red vector is our signal of interest while the shorter 

vector represents the noise component. Hence we can 
ignore the short vector and the data can be approximated 

in 1D, i.e., the first eigenvector is the principal component. 
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PCA will fail when the data cannot be represented better via 
another linear transform: 

 

 
 

Here, the information is contained in the angle . 
 

But θ is nonlinear w.r.t. to   basis. 



 

X. P. Li (H. C. So’s EE4016)                                                             Page 34                                                                 Semester A 2023/24 

PCA may not be suitable tool when the important information 
is nonorthogonal: 

 

 
 

Here, the second dominant vector, which is orthogonal to the 
first one, does not match the data well. 

 



 

X. P. Li (H. C. So’s EE4016)                                                             Page 35                                                                 Semester A 2023/24 

PCA will fail when we are interested in the non-principal 
components. 

 

 
 

The principal components may correspond to the chessboard.  

 
PCA may not be useful if we are interested in the pieces. 
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Also, if the data do not have dominant principal components, 
e.g., random noise, we may not be able to extract useful 

information using PCA (or other dimensionality reduction 

schemes): 

 
>> svd(randn(1000,10)) 

   34.2535 

   33.5750 

   32.6017 

   32.1161 

   31.8181 

   30.9503 

   30.2355 

   28.9969 

   28.5793 

     28.4865 

 
The singular values are comparable and thus all components 
are important or interesting. 
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Training and Scoring with PCA 
 

PCA can be used as classification and two phases are involved: 

training and scoring. 
 

We assume that there is a set of training data and we perform 

the evaluation using test data 

 

In training phase, we need to form a scoring matrix from 

training data. Suppose we have   training vectors 

and each has a length of . 

 

The steps are: 

1. Form  and then compute ,  

2. Compute  via EVD of  or SVD of  
3. Extract  dominant vectors to form   

4. Compute the scoring matrix  
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Note that the columns of  is formed by projecting the 
training vectors  onto the eigenspace , e.g., the th 

column of  is: 

                                                                  (6) 

 

Hence  can be referred to as trained model. 

 
Illustration of projecting a vector on a 2D space 

Source: https://www.quora.com/What-is-meant-by-the-projection-of-a-vector 

https://www.quora.com/What-is-meant-by-the-projection-of-a-vector
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In the scoring phase, the task is to find the best match of a 
vector  with . The main idea is to project the test 

vector onto  and then find the closest . That is, we 

perform the classification in the projected space. 

 

The steps are: 

1. Compute  

2. Compute  , i.e., the projection of   onto  

3. Compute the distance between  and each of the . The 

distance is usually represented as the Euclidean distance: 
 

 
 

4. The score is given by: 
 

 

         The best match of  is  where  
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It is seen that training is somewhat involved particularly for 
large  and/or , while scoring is simple and fast. 

 

Example 5 

We continue with Example 4. We consider the 4 vectors as 

training data: 

 

>> [U,S,V]=svd(bX) 
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U  

    0.1641    0.2443   -0.0710    0.6482    0.6137   -0.3341 

    0.6278    0.1070    0.2934    0.4387   -0.4970    0.2624 

   -0.2604   -0.8017    0.3952    0.3623    0.0389   -0.0239 

   -0.5389    0.4277    0.3439    0.2109    0.1133    0.5925 

    0.4637   -0.1373    0.3644   -0.4089    0.5909    0.3420 

    0.0752   -0.2904   -0.7083    0.2109    0.1133    0.5925 

S  

    4.0414         0         0         0 

         0    2.2239         0         0 

         0         0    1.7237         0 

         0         0         0    0.0000 

         0         0         0         0 

         0         0         0         0 

 

V  

   -0.2739    0.6961   -0.4364    0.5000 

    0.3166    0.2466    0.7674    0.5000 

   -0.6631   -0.5434    0.1224    0.5000 

      0.6205   -0.3993   -0.4534    0.5000 
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As the number of nonzero singular values is at most , 

“economic” mode is preferred to save complexity: 
>> [U,S,V]=svd(bX,'econ') 
 

U = 

    0.1641    0.2443   -0.0710    0.6482 

    0.6278    0.1070    0.2934    0.4387 

   -0.2604   -0.8017    0.3952    0.3623 

   -0.5389    0.4277    0.3439    0.2109 

    0.4637   -0.1373    0.3644   -0.4089 

    0.0752   -0.2904   -0.7083    0.2109 

S = 

    4.0414         0         0         0 

         0    2.2239         0         0 

         0         0    1.7237         0 

         0         0         0    0.0000 

V = 

   -0.2739    0.6961   -0.4364    0.5000 

    0.3166    0.2466    0.7674    0.5000 

   -0.6631   -0.5434    0.1224    0.5000 

     0.6205   -0.3993   -0.4534    0.5000 
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Note that , it can be exactly represented as 

truncated SVD with components: 
>> U(:,1:3) 

    0.1641    0.2443   -0.0710 

    0.6278    0.1070    0.2934 

   -0.2604   -0.8017    0.3952 

   -0.5389    0.4277    0.3439 

    0.4637   -0.1373    0.3644 

    0.0752   -0.2904   -0.7083 

 

>> S(1:3,1:3) 

    4.0414         0         0 

         0    2.2239         0 

         0         0    1.7237 

 

>> V(:,1:3) 

   -0.2739    0.6961   -0.4364 

    0.3166    0.2466    0.7674 

   -0.6631   -0.5434    0.1224 

      0.6205   -0.3993   -0.4534 
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Note that the singular values are ,  and 
. Then the eigenvalues are , 

and  up to a scalar. The exact values should be 

,  and  because it can be verified 

that . 

 

If we use all eigenvectors, that is, we choose  and the 

scoring matrix  is computed as 
 

>> U(:,1:3).'*bX 

-1.1070    1.2794   -2.6801    2.5076 

 1.5480    0.5484   -1.2084   -0.8879 

  -0.7523    1.3228    0.2110   -0.7815 

 
For : 
>> U(:,1:2).'*bX 
 -1.1070    1.2794   -2.6801    2.5076 

    1.5480    0.5484   -1.2084   -0.8879 



 

X. P. Li (H. C. So’s EE4016)                                                             Page 45                                                                 Semester A 2023/24 

For : 
>> U(:,1:1).'*bX 

   -1.1070    1.2794   -2.6801    2.5076 

 

Consider matching a vector  with the training 

data set  and using  

 
>> y = [2, 1, 0, 3, 1, 1].'; 

by=y-mean(X,2); 

U(:,1:3).'*by 

 

   -1.1070 

    1.5480 

     -0.7523 

 

What is the score? 

What is the best match of y? Why? 
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Consider another  and : 
 

>> y = [2, 3, 4, 4, -3, -2].'; 

by=y-mean(X,2); 

w=U(:,1:3).'*by 

 

  -3.5124 

   0.4036 

    2.4265 
 

The distance between  and  is then: 
 

 
 

Other distances are: 
>> D=U(:,1:3).'*bX; 

[norm(w-D(:,1)),norm(w-D(:,2)),norm(w-D(:,3)),norm(w-D(:,4))] 
 

    4.1473    4.9193    2.8636    6.9426 
 

Hence we see that the best match is . 
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Consider another  and : 
>> w=U(:,1:2).'*by; 

   -3.5124 

    0.4036 

 

>> D=U(:,1:2).'*bX; 

-1.1070    1.2794   -2.6801    2.5076 

 1.5480    0.5484   -1.2084   -0.8879 

 

[norm(w-D(:,1)),norm(w-D(:,2)),norm(w-D(:,3)),norm(w-D(:,4))] 
 

    2.6637    4.7939    1.8142    6.1570 
 

The best match is still . 

 

We will see that for this example, even one principal 

component can give the consistent classification result. 
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Consider another  and : 
>> w=U(:,1).'*by 

   -3.5124 
 

>> D=U(:,1).'*bX 

   -1.1070    1.2794   -2.6801    2.5076 
 

[norm(w-D(:,1)),norm(w-D(:,2)),norm(w-D(:,3)),norm(w-D(:,4))] 

    2.4054    4.7918    0.8323    6.0200 
 

Again, the best match is still . 
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PCA for Face Recognition 
 

Face recognition is one of the standard applications of PCA. 

Consider using the ORL face database: 
 

▪ Composed of 400 images with dimensions 112 x 92. 
 

▪ There are 40 persons, 10 images per each person. 
 

▪ The images were taken at different times, lighting and 

facial expressions.  
 

▪ The faces are in an upright position in frontal view, with a 
slight left-right rotation. 
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The face recognition system can be set up as follows. The 
400 images are divided into non-overlapped training data and 

testing data. 

 

In the training phase, we select 1 to 9 images for each person 

to create the scoring matrix. 
 

For each image, we convert the matrix to a vector of length 

10304. 
 

For example, if 5 images of each person are used, then we 

have . Note that there will be 200 images for 

testing. 
 

By determining  , we can use the dominant vectors to form 
 , and then obtain the scoring matrix 

. 



 

X. P. Li (H. C. So’s EE4016)                                                             Page 51                                                                 Semester A 2023/24 

In the scoring phase, we pick one vector from the testing 
database and then project its mean-subtracted version onto 

 and then find the nearest column vector in   as the score. 

 

A successful case is shown: 
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According to the provided source code using the ORL 
database, the recognition accuracy can be over 90%. 

 

Preprocessing considerations: 
 

▪ Cropping from the original images is needed 

▪ If the image is large, size reduction is needed, e.g., an 
image of dimensions  can be reduced to  with 

a downsampling factor of 2 

 
Source: http://eeweb.poly.edu/~yao/EL5123/lecture8_sampling.pdf 

▪ If all images are not of equal sizes, we may pad zero to 

make all column vectors having the same length of  

http://eeweb.poly.edu/~yao/EL5123/lecture8_sampling.pdf
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System design and evaluation considerations: 
 

▪ How many data are used for training? How many data are 

used for testing? How will this arrangement affect the 

computational requirement and recognition accuracy? 

▪ How to choose an appropriate value of the number of 

principal components ? How will  affect the recognition 
accuracy? 
 

As the eigenvalue represents the power of each principal 

component, one possibility is to choose  such that: 
 

 

 

where  is a threshold parameter, e.g., 90% 
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▪ Are the results reliable? How can we obtain an average 
performance? 
 

Cross validation can be applied to see if the results among 
different training and testing data partitions are consistent, 

and obtain the average performance: 

 
Source: https://medium.com/uxai/機器學習馬拉松-034-訓練-測試集切分概念-af08ade0595a 

https://medium.com/uxai/機器學習馬拉松-034-訓練-測試集切分概念-af08ade0595
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e.g., for the ORL database, we can use -fold cross 
validation with : 

 

We randomly divide the 400 images into 10 sets such that 

each contains 40 different persons.  

 

For each iteration, 9 sets are used for training while the 

remaining set is reserved for testing.  

 

There will be 10 recognition results and we can check for 

their consistency and compute the average recognition 

accuracy. 
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Note that  can be constructed as   eigenfaces: 
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The set of the eigenfaces or  can be used to approximate 
another person not included in the training dataset via the 

projection: 
 

 
 

 
What is the advantage of this approximation? 

This is possible because the eigenfaces span a large 
subspace of image space corresponding to different features 

such as cheeks, forehead and mouths. 
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Even dog and cup of coffee: 
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We can also visualize the use of eigenfaces or  in a 2D 

coordinate system where each point is , e.g., 

projecting two individuals onto the 5th and 6th principal 

components, and we may still separate them: 
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Two-Dimensional PCA 
 

2DPCA is a variant of PCA which is a matrix-as-matrix 

approach, i.e., vectorization of matrices is not needed. 

 

The main idea is to exploit the so-called image covariance 

matrix. 

 

Given  training matrix data , , the 

image covariance matrix is computed as: 
 

 

 
The  dominant eigenvectors of  , grouped as  

 are utilized.  
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For each image , we compute the projection:  
 

 
 

As in the scoring matrix  in the PCA, now we 

have a set of scoring matrices , , . 

 

In the scoring phase, suppose there is a testing image 

, we compute the projection: 
 

 
 

The sum of  distances between the column vectors of  and 

 is used for matching: 
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As in the PCA, the score is given by: 
 

 

 

The best match of  is  where  

 

As in SVD or PCA, 2DPCA can be employed to approximate a 

group of images. To directly store , , 

we need a memory size of . 

 
With the use of 2DPCA, we need to store  and  

, , corresponding to . The 

compression ratio is then: 
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Tensor Basics 
 

Tensor is important because it can directly represent data of 

three or higher dimensions. 

 

Although a tensor can be unfolded as a matrix or even a 

vector, it is advantageous to process it in the original domain 

so that the inherent structure is maintained. 

 

A th-order tensor  is in fact a -dimensional 

signal where its th dimension has length , , and 

thus it contains  elements. 

 

Tensor generalizes matrix and vector because it corresponds 

to  and , respectively. 
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 is of rank 1 if it can be written as the outer 
product of  vectors: 

 

 
 

That is, the element of  is: 

 

 

 

For example, if  and , then 

 

 

 
which is clearly of rank 1. 
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A rank-1 third-order tensor  is: 
 

 
 

To approximate a tensor, one approach is to use the CP 

decomposition, where C stands for canonical decomposition 
(CANDECOMP) and P stands for parallel factors (PARAFAC). 
  

 is approximated as rank-  tensor: 
 

              (7) 

 

The CP decomposition can be exactly equal to  when . 
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For a third-order tensor , the CP decomposition is: 
 

                        (8) 

 

where ,  and . 
 

Its element is expressed as: 
 

        (9) 
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On the other hand, Tucker decomposition or higher-order 
SVD (HOSVD) can be used. 

 

To proceed, we first define the -mode product of a tensor 

 and a matrix , denoted by 

: 

 

 

 

Let . The idea can be expressed using unfolding: 

 
 

 

where  is the -mode unfolding of . 
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The -mode unfolding can be illustrated using a third-order 
tensor  with , , and  as follows: 

 

Source: A. Cichocki, R. Zdunek, A. H. Phan, S.-i. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data 

Analysis and Blind Source Separation, John Wiley, 2009 
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Example 6 
Let  be sliced at: 
 

 and     

Then 
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Suppose 

 

 

Then  consists of slices: 
 

     and     

 

The HOSVD of  is: 
 

                     (10) 
 

where  is the matrix containing the left singular 
vectors of  as in (1). 
 

 is called the core tensor and is computed as: 
 

                                (11) 
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The element of  is: 
 

 

 

where . In practice,  can be of 

smaller size to achieve data compression. 

 

Taking the third-order tensor  as illustration: 
 

                      (12) 

 

where ,  and  are factor matrices or 

principal components in each mode, and , with 
,  and . 
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Element-wise, (12) means 
 

(13) 

 

Comparing (8)-(9) and (12)-(13), CP can be viewed as a 

special case of HOSVD when  and  for 

 and 0 otherwise. 
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Example 7 
Perform the HOSVD on the tensor  in Example 6. 

 

According to (10), the HOSVD of  is: 

 

 
 

where ,  and  are matrices containing the left 

singular  vectors of ,  and , respectively, which 

have been determined in Example 6. 
 

Note that the computation is performed from left to right, i.e., 

 is first computed. 
 

We make use of tensor toolbox in MATLAB to perform 
operations including HOSVD and -mode product. For 

example, a tensor can be created using tensor. 
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The HOSVD can be computed using: 
X(:,:,1) = [1 4 7 10; 2 5 8 11; 3 6 9 12]; 

X(:,:,2) = [13 16 19 22; 14 17 20 23; 15 18 21 24]; 

X = tensor(X); 

Y = hosvd(X,10^-8); G = Y.core; 

A1 = Y.U{1}; 

A2 = Y.U{2}; 

A3 = Y.U{3}; 

 

Verification can be done using: 
GA1 = double(A1)*double(tenmat(G,1));  

T = tensor(reshape(GA1,[3,2,2])); 

TA2 = double(A2)*double(tenmat(T,2));  

T1(:,:,1) = TA2(:,1:3)'; 

T1(:,:,2) = TA2(:,4:6)'; 

Final = double(A3)*double(tenmat(T1,3));  

R(:,1,:) = Final(:,1:3)'; 

R(:,2,:) = Final(:,4:6)'; 

R(:,3,:) = Final(:,7:9)'; 

R(:,4,:) = Final(:,10:12)'; 
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The result based on (10) is 
>> R 

R is a tensor of size 3 x 4 x 2  

 
R(:,:,1) = 

1.0000 4.0000 7.0000 10.0000 

2.0000 5.0000 8.0000 11.0000 

3.0000 6.0000 9.0000 12.0000 

 
R(:,:,2) = 

13.0000 16.0000 19.0000 22.0000 

14.0000 17.0000 20.0000 23.0000 

15.0000 18.0000 21.0000 24.0000 

 

which is equal to . 

 
Approximation using (12) or (13) can be evaluated as well. 

For example, using  as a scalar, i.e., : 
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S(:,:,1)=zeros(3,4); 

S(:,:,2)=zeros(3,4); 

S = tensor(S);  

for i = 1:3 

    for j = 1:4 

        for k= 1:2 

           S(i,j,k) =G(1,1,1)*A1(i,1)*A2(j,1)*A3(k,1); 

       end 

   end 

end 

We see : 
>> S  

S(:,:,1) = 

    4.5862 5.8637  7.1411 8.4186 

    4.8866 6.2477  7.6089 8.9700 

    5.1869 6.6318  8.0766 9.5214 

S(:,:,2) =    

    12.1422 15.5244 18.9066 22.2888 

    12.9375 16.5412 20.1450 23.7487 

    13.7328 17.5580 21.3833 25.2086 
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Example 8 
We demonstrate video compression using HOSVD. Two 

videos are downloaded from: 

 

http://jacarini.dinf.usherbrooke.ca/dataset2014/ 

 

The first is extracted from overpass.zip with dimensions 240 

x 320 x 96. 

 

The second is extracted from peopleInshade.zip with 

dimensions 244 x 380 x 44. 

 
The compression ratio is: 

 

 

http://jacarini.dinf.usherbrooke.ca/dataset2014/
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